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Abstract 

We develop a pre-unification algorithm in the style of Huet for the linear A-calculus \-^~o!zT which 
includes intuitionistic functions (-»), linear functions (—o), additive pairing (&), and additive unit (T). 
This procedure conveniently operates on an efficient representation of A->~0&T, the spine calculus S1-»—°&T 

for which we define the concept of weak head-normal form. We prove the soundness and completeness 
of our algorithm with respect to the proper notion of definitional equality for 5^'_0&T, and illustrate 
the distinctive aspects of linear higher-order unification by means of examples. We also show that, 
surprisingly, a similar pre-unification algorithm does not exist for certain sublanguages. Applications lie 
in proof search, logic programming, and logical frameworks based on linear type theories. 
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1    Introduction 

Linear logic [Gir87] enriches more traditional logical formalisms with a notion of consumable resource, 
which provides direct means for expressing and reasoning about mutable state. Attempts at mechanizing 
this additional expressive power led to the design of several logic programming languages based on 
various fragments of linear logic. The only new aspect in the operational semantics of most proposals, 
such as Lolli [HM94], Lygon [HP94] and Forum [Mil96], concerns the management of linear context 
formulas [CHP96]. In particular, the instantiation of logical variables relies on the traditional unification 
algorithms, in their first- or higher-order variants, depending on the language. More recent proposals, 
such as the language of the linear logical framework LLF [Cer96, CP96] and the system RLF [IP96], 
introduce linearity not only at the level of formulas, but also within terms. Consequently, implementations 
of these languages must solve higher-order equations on linear terms in order to instantiate existential 
variables. In this paper we present a complete algorithm for pre-unification in a linear A-calculus which 
conservatively extends the ordinary simply-typed A-calculus and could be used directly for the above 
languages. 

An example will shed some light on the novel issues brought in by linearity. A rewrite rule r : t\ =£• 2 2 
is applicable to a term t if there is an instance of t\ in t; then, applying r has the effect of replacing it 
with £2 (assume t\ and t% ground, for simplicity). This is often formalized by writing t = t[ti], where 
the rewriting context i is a term containing a unique occurrence of a hole ([_]) so that replacing the 
hole with t\ yields t. We can then express r as the parametric transition T[t{\ => T[h], where T is a 
variable standing for a rewriting context. The applicability of r to a term t reduces to the problem of 
whether t and the higher-order expression (Tti) are unifiable, where T is viewed as a functional variable. 
Traditional higher-order unification does not take into consideration the linearity constraint that exactly 
one occurrence of t\ must be abstracted away from t. Indeed, matching (Tt\) with (ct\t{) has four 
solutions: 

T <— Xx.chti 
T i—  Xx.cx X 

T <— Xx. cxt\ 
T <— Xx. ct\x 

But the first match in the box does not have any hole (the variable x) in it while the second contains 
two. Linear unification, on the other hand, returns correctly only the two unboxed solutions. This means 
also that a natural encoding of a rewrite system based on rewriting contexts in the logical framework LF 
would implement a post-processing phase that filters out non-linear solutions, while this step would be 
unnecessary in LLF. The problem representation would therefore be more direct and compact in this 
language. 

The introduction of linear term languages in LLF and RLF has been motivated by a number of 
applications. Linear terms provide a statically checkable notation for natural deductions [IP96] or se- 
quent derivations [CP96] in substructural logics. In the realm of programming languages, linear terms 
naturally model computations in imperative languages [CP96] or sequences of moves in games [Cer96]. 
When we want to specify, manipulate, or reason about such objects (which is common in logic and the 
theory of programming languages), then internal linearity constraints are critical in practice (see, for 
example, the first formalizations of cut-elimination in linear logic and type preservation for Mini-ML 
with references [CP96]). 

Differently from the first-order case, higher-order unification in Church's simply typed A-calculus A~^ is 
undecidable and does not admit most general unifiers [G0I8I]. Nevertheless sound and complete (although 



possibly non-terminating) procedures have been proposed in order to enumerate solutions [JP76]. In 
particular, Huet's pre-unification algorithm [Hue75] computes unifiers in a non-redundant manner as 
constraints and has therefore been adopted in the implementation of higher-order logic programming 
languages [NM88]. Fragments of A^ of practical relevance for which unification is decidable and yields 
most general unifiers have also been discovered. An example are Miller's higher-order patterns [Mil91], 
that have been implemented in the higher-order constraint logic programming language Elf [Pfe91a]. 
Unification in the context of linear A-calculi has received limited attention in the literature and, to our 
knowledge, only a restricted fragment of a multiplicative language has been treated [Lev96]. Unification 
in A~^ with linear restrictions on existential variables has been studied in [Pre95]. 

In this extended abstract, we investigate the unification problem in the linear simply-typed A-calculus 
^-+-O&T yye gjve a pre_unification procedure in the style of Huet and discuss the new sources of non- 
determinism due to linearity. Moreover, we show that no such algorithm can be devised for linear 
sublanguages deprived of T and of the corresponding constructor. /\

-y~0&T corresponds, via a natural 
extension of the Curry-Howard isomorphism, to the fragment of intuitionistic linear logic freely generated 
from the connectives —>, -o, & and T, which constitutes the propositional core of Lolli [HM94] and 
LLF [CP96]. A~*'-0&T is also the simply-typed variant of the term language of LLF and shares similarities 
with the calculus proposed in [Bar96]. Its theoretical relevance derives from the fact that it is the largest 
linear A-calculus that admits unique long ^-normal forms. 

The principal contributions of this work are: (1) a first solution to the problem of linear higher-order 
unification, currently a major obstacle to the implementation of logical frameworks and logic programming 
languages relying on a linear higher-order term language; (2) the elegant and precise presentation of an 
extension of Huet's pre-unification procedure as a system of inference rules. 

Our presentation is organized as follows. In Section 2, we define A"+_0&T and introduce the spine cal- 
culus g-»-°&T as an equivalent formulation better suited for our purposes. The pre-unification algorithm 
is the subject of Section 3, where we define the problem, present our solution and prove its soundness and 
completeness with respect to the proper notion of equality for 5_>'_0&T. We study the unification problem 
in sublanguages of /\~*'~0&T and hint at the possibility of a practical implementation in Section 4. In order 
to facilitate our description in the available space, we must assume the reader familiar with traditional 
higher-order unification [Hue75] and linear logic [Gir87]. 

2    A Linear Simply-Typed A-Calculus 

This section defines the simply-typed linear A-calculus A_*'_0&T (Section 2.1) and presents an equivalent 
formulation, 5-»—<>&T (Section 2.2), which is more convenient for describing and implementing unifica- 
tion. Moreover, we define the notion of (weak) head-normal form for S^'~oSzT (Section 2.3), and discuss 
equality in this calculus (Section 2.4). We conclude with a technical note about ^-expansion in 5->-°&T 

(Section 2.5). 

2.1    Basic Formulation 

The linear simply-typed A-calculus \-+-<>&T extends Church's A-*' with the three type constructors —o 
(multiplicative arrow), & (additive product) and T (additive unit), derived from the identically denoted 
connectives of linear logic. The language of terms is augmented accordingly with constructors and 
destructors, devised from the natural deduction style inference rules for these connectives. Although not 
strictly necessary at this level of the description, the inclusion of intuitionistic constants will be convenient 
in the development of the discussion. We present the resulting grammarin a tabular format that relates 
each type constructor (left) to the corresponding term operators (center), with constructors preceding 



F;- hs,c:j4 c : A 
• A_con 

- A_unit 
F;Ahs <>:T' 

r;AhE M : A    r;AhE N : B 
  A_pair 

r;AhE (M,N):A&B 

r;A,a;:^l-E  M : B 

r;AhE Xx:A.M:A-oB 

T,x:A;A\-s M : B 
  A_ilam 
T;A l-E \x:A.M :A-> B 

  A_lvar   
T;x:A hs x : A r, x: A; ■ hE x : A 

(No elimination rule for T) 

r;AhE M-.A&B 

F;AhE FSTM :A 

A_ivar 

A_Ilam 

r;AhE M : ALB 
A_fst   

T; Ah SND M : B 

r;A'l-sM:i-oS    r; A" hE TV : A 
  A_lapp 

r;A',A"f-s M~N :B 

r;Ahs M :A-> B    r;-l-E N :A 

A_snd 

T;AhE MN-.B 
_iapp 

Figure 1: Typing in A -o&T 

destructors. Clearly constants and variables can have any type. 

Types:  A a Terms: M : :=   c | x 
Ai -► A2 |   Xx:A.M | M\ M2                    (intuitionistic functions) 

Ai —o .A 2 |   \x:A.M | Mi ~M2                   (linear functions) 

AikA2 I   (Mi,M2) | FST M | SND M    (additive pairs) 
T 1   0 (additive unit) 

As usual, we rely on signatures and contexts to assign types to constants and free variables, respectively. 

Signatures:   S ::= •  | S,c : A Contexts:  T ::= •  I T.x : A 

Here x, c and a range over variables, constants and base types, respectively. In addition to the names 
displayed above, we will often use N, B and A for objects, types and contexts, respectively. 

The notions of free and bound variables are adapted from A-*'.. As usual, we identify terms that differ 
only by the name of their bound variables and write [M/x]N for the capture-avoiding substitution of M 
for x in the term N. We require variables and constants to be declared at most once in a context and 
in a signature, respectively. Since the order in which these declarations occur will be irrelevant in our 
presentation, we will treat contexts and signatures as multisets (with every element occurring exactly 
once). We promote "," to denote their union and omit writing "•" when unnecessary; when using this 
notation in A, A' for example, we shall always assume that the participating multisets A and A' are 
disjoint. 

The typing judgment for A_f_0&T has the form 

r;Ahs M : A 

where T and A are called the intuitionistic and the linear context, respectively. The inference rules for 
this judgment are displayed in Figure 1. Deleting the terms that appear in them results in the usual 
rules for the (->-o&T) fragment of intuitionistic linear logic, ILL~*~°UJ [HM94], in a natural deduction 
formulation. A~*'_0&T and ILL~*~0&cT are related by a form of the Curry-Howard isomorphism. 

The reduction semantics of \->-°&T [s given by the transitive and reflexive closure of the congruence 
relation built on the following /?-reduction rules: 

FST (M,N) 
SND (M, N) 

M 
N 

(\x:A.M)~N 
(Xx:A.M)N 

[N/x]M 
[N/x]M 

Similarly to A-*, A-)'_0&T enjoys a number of highly desirable properties [Cer96].   In particular, 
since the usual presentation of the elimination rules for the remaining operators (for example for ®) 



r;A' hE U :A    r;A" hE S : A > a 
 lS_redex 

r;A',A" l-s U-S :a 

r;A hE,c:j4 S:A >a T;A\-xS:A>a T,x:A; A hE 5 : A > a 
- lS_con  lS_lvar  lS_ivar 
r; A \--£,c:A c ■ S : a T; A, x: A \-z x ■ S : a F, x:A; A hE x ■ S : a 

F; A hE Ui : Ax    F; A hE U2 : A2 
 lS_unit   
r;Ahs():T r;A hE (t/i,C/2) :A1hA2 

T;A,x:A hE  [/: B r,a;:,4; A hE  {7 : B 
 lSJlam   

r;A l-E  \x:A.U :A-oB T;A\-^\x:A.U:A-^B 

- lS_pair 

Spines 

r; • hE  NIL : a > a 

F;AhE S :A!>a T; A hE S : A2 > a 
(No spine rule for T)  is_fst  is.snd 

T;A hs viS : Ai&A2 >a T; A hE w2 S :Axk,A2 >a 

T;A'hsU:A    T; A" hs S : B > a T;-hsU:A    T;AhBS:B>a 
 lS_lapp  lS_iapp 

r;A',A" hE U',S :A-oB>a T; A hE U; S : A -*• B > a 

Figure 2: Typing for »y-Long 5-*--°&T Terms 

introduces commutative conversions, it is the largest linear A-calculus for which strong normalization holds 
and yields unique normal forms. However, non-standard presentations bypass commutative conversions 
and therefore extend the class of strongly normalizing languages (for example allowing ® as a type 
constructor), although at the cost of added complexity [Min98]. We will not pursue this thread. 

A term M of type A is in rj-long form if it is structured as a sequence consisting solely of constructors 
(abstractions, pairing and unit) that matches the structure of the type A, applied to atomic terms in those 
positions where objects of base type are required. An atomic term consists of a sequences of destructors 
(applications and projections) that ends with a constant, a variable or an 77-long /?-redex, where the 
argument part of each application is required to be itself an 77-long term. This definition extends the 
usual notion of ?7-long term of A~* to the linear type operators -o, & and T of A~*~°&T. For example, in 
a context consisting solely of the assumption x : A, for A — a k (a —o a), 

M = (FST x, \y:a. (SND x)"y) 

is an 77-long term of type A. Indeed M starts with a paring construct that matches the conjunction in A, 
its left component, which has base type a, is atomic, and its right component is itself an »7-long term of 
type a—oa. Instead x by itself is not an ?7-long term of type A. The unit type T manifests an interesting 
behavior since there is a unique 77-long term of that type, namely (). As in A~*, every well-typed term in 
our language has a corresponding 77-long form, called its rj-expansion. The 77-long form of x above is the 
term M, while every term of type T is expanded to {). 

We write Can(M) for the canonical form of the /\
_>'_0&T term M, defined as the 77-expansion of its 

/^-normal form. Notice that Can(«) corresponds to the 77-long form of the variable x. In the following, 
we will insist in dealing always with fully 77-expanded terms. 

2.2    The Spine Calculus 

Unification algorithms base a number of choices on the nature of the heads of the terms to be unified. 
The head is immediately available in the first-order case, and still discernible in A-1 since every 77-long 
normal term has the form 



Xxi: Ai. ... Xxn : An. h Mx ...Mm 

where the head A is a constant or a variable and (h Mi .. .Mm) has base type. The usual parentheses 
saving conventions hide the fact that h is indeed deeply buried in the sequence of application and therefore 
not immediately accessible. A similar notational trick fails in A-*""0,511" since on the one hand a term of 
compound type can have several heads (e.g. c\ and c2 in (ci,C2)), possibly none (e.g. ()), and on the 
other hand destructors can be interleaved arbitrarily in a term of base type (e.g. FST ((SND C) "X y)) 

The spine calculus S~*~oicT [CP97] permits recovering both efficient head accesses and notational 
convenience. Every A-i'_0&T term M of base type is written in this presentation as a root H ■ S, where 
H corresponds to the head of M and the spine S collects the sequence of destructors applied to it. For 
example, M — (h Mi .. .Mm) is written U = h ■ (Ui; .. . J/m;NlL) in this language, where ";" represents 
application, NIL identifies the end of the spine, and U is the translation of Mj. Application and ";" 
have opposite associativity so that Mi is the innermost subterm of M while U\ is outermost in the spine 
of U. This approach was suggested by an empirical study of higher-order logic programs based on A-* 
terms [MP92] and is reminiscent of the notion of abstract Böhm trees [Her95a, Her95b]; its practical 
merits in our setting are currently assessed in an experimental implementation. The following grammar 
describes the syntax of 5_+_0&T: we write constructors as in A~*~°&T, but use new symbols to distinguish 
a spine operator from the corresponding term destructor. 

Terms:  U ::=   H • S Spines:  S ::=   NIL Heads:  H ::=   c \ x \ U H-S Spines: S::-- =    NIL 

\x:A.U 1   U;S 
\x:A.U 1  W\S 
(Ui,U2)   . I  TI s 
0 

7T25 

We adopt the same syntactic conventions as in A_y_0&T and often write V for terms in 5_>'_0&T. Terms 
are allowed as heads in order to construct /?-redices. Indeed, a normal term has either a constant or a 
variable as its heads. 

The typing judgments for terms and spines are denoted as follows: 

r; A l-£ U : A U is a term of type A in T; A and S 
r; A hs 5 : A > a S is a spine from heads of type A to terms of type a in T; A and S 

The latter expresses the fact that given a head H of type A, the root H ■ S has type a. Notice that the 
target type of a well-typed spine is a base type. This has the desirable effect of permitting only ?/-long 
terms to be derivable in this calculus [CP97]: allowing arbitrary types on the right-hand side of the spine 
typing judgment corresponds to dropping this property, as we will see in Section 2.5. Abstract Böhm 
trees [Bar80, Her95a] are obtained in this manner. 

The mutual definition of the two typing judgments of 5,-^-°&T js given in Figure 2. The opposite 
associativity that characterizes the spine calculus with respect to the more traditional formulation is 
reflected in the manner types are managed in the lower part of this figure. 

There exists a structural translation of terms in A_!'-0&T to terms in S^~°^T, and vice versa. This 
mapping and the proofs of soundness and completeness for the respective typing derivations can be found 
in [CP97]. 

In the sequel, we will need the following simple property of typing derivations, which states that the 
intuitionistic context of any valid derivation can be arbitrarily weakened. 

Lemma 2.1  (Intuitionistic weakening) 

i. If T; A hs U : A, then for any context V, there is a derivation of T,V; A hs U : A. 

ii. If T; A hs S : A > a, then for any context V, there is a derivation of T,T';A\-^'S:A>a.   □ 

On the basis of this result, it is a simple matter to prove the following lemma, that we will need in 
the sequel. It states that linear hypotheses can be viewed as intuitionistic assumptions with additional 
properties. An analogous result is proved in [Cer96]. Clearly, the reverse property does not hold. 



Reductions 

(U, V) -faS) —>u-s 

(H ■ S) ■ NIL —► H ■ S 

■ Sr_beta_fst 

■ Sr_beta_lin 

(Xx:A.U)-V',S —>• [V/x]U -S 

Congruences 

s - -»■ 5' 

c-S - -^ c-S' 

u — > u' 

U- S — ¥  U' -S 

u — ■» u' 

(U,V) - + (U',V) 

u — » £/' 

Sr_pairl 

A:r:At/ —» Ar:A 17' 

5 - -»■ 5' 

7Tl 5   - —>•   7Ti 5 

£/ — >   t/' 

c/?s — » t/';5 

{/ — ■»• U' 

U;S —>• C/';5 

Sr_lappl 

Sr_iappl 

({/, F) • (TT2 S) —+ V • 5 
■ Sr_beta_snd 

(Ar:At/)-^;5 —-)• [V/:c]t/-S 

5' 

■ Sr_beta_int 

a; • 5 —>■ x ■ S 

S —>• S' 

u-s —> u-s' 

V —* V 

(U,V) —» <[/,V'} 

i7 —* t/' 

Ar:Al/ —> Az:A[/' 

■ Sr_pair2 

- Sr_ilam 

s - -> 5' 

7T2 S   — -»   7T2 5' 

S   - -»■ 5' 

u-s - -+ C/;5' 

s - -+ 5' 

U;S —+ U;S' 

Sr_lapp2 

Sr_iapp2 

c/ —> v 

u —->* F u —+* u 

u —>* u'  u' —>* u" 

u —>* c/" 

Figure 3: Reduction Semantics for S o&T 

Lemma 2.2 (Promotion) 

i. If T;A,x:B\s U : A, then there is a derivation of T, x: B; A \~Y, U : A. 

ii. If T;A,x:B\~s S : A> a, then there is a derivation of T,x:B; A hs S : A > a. D 

The reduction semantics of 5->--°&T js based on the following /^-reductions, which are obtained from 
the analogous rules of \-+-°&T [CP96, CP97] by means of the mentioned translation. 

(U, V) ■ (;n S) 
(U, V) • (TT2 S) 

(Xx:A.U)-{V',S) 
(Xx:A.U)-(V;S) 

U-S 

V-S 

[V/x]U ■ S 
[V/x]U -S 

The trailing spine in the reductions for 5-*--°&T Js a consequence of the fact that this language reverses 
the nesting order of \-*-°&T destructors. The structure of roots in the spine calculus makes one more 
/^-reduction rule necessary, namely: 

(H ■ S) ■ NIL   —>   H-S 



For future reference, we give the complete rule set for reduction in 5,-4--°&T in Figure 3. We write 
—y* for the reflexive and transitive closure of —K It is easy to prove that the inference rules obtained by 
systematically replacing —> with —>* in this figure are admissible. In particular, we will make implicit 
uses of the transitivity rule to build chains of reductions. 

In most of this paper, we will insist on terms being in rj-long form. Enforcing this requirement 
and maintaining it as an invariant of the operations we consider will have the beneficial effect of sim- 
plifying considerably the discussion. Indeed, while working around extensionality leads only to minor 
complications for function and product types, accomodating the unit type (T) requires a large amount 
of machinary and elaborate techniques. Furthermore, an implementation that works on T^-long terms 
only can be essentially type-free, while a program that performs ^-expansion at run-time needs typing 
information pervasively. 

As a result of working with ??-long terms only, roots have always base type and so do the target types 
in the spine typing judgment. The /?-reduction rules above preserve not only well-typedness, but also 
long forms so that ^-expansion steps never need to be performed. This property is formalized in the 
following lemma, whose proof can be found in [CP97]. 

Lemma 2.3 (Subject reduction) 

i. If T; A hs U :A and  U —»■ V, then  T; A hs V : A. 

ii. If F; A hs 5 :A>a and  S —> S', then   T;AhsS':A>a. D 

The following technical result is proved as in A~*'-0&T [Cer96]. 

Lemma 2.4 (Substitution) 

t. If U —>* U'   and  V —>* V, then   [V/x]U —+* [V'/x]U'. 

ii. If S —>* S'   and  V —►* V, then   [V/x]S —>* [V'/x]S'. □ 

Similarly to A~f_0&T, the spine calculus is confluent, i.e. every two sequences of reductions at a term 
(spine) can be extended to a common reduct. This fact is formalized in the following theorem [CP97]. 

Theorem 2.5 (Confluence) 

i. If U —>* U\ and  U —>* Hi, then there is a term U' such that U\ —>* U' and  U2 —>* U'. 

ii. If S —>* Si and S —>* £2, then there is a spine S" such that Si —>* S' and  S2 —>* S'. □ 

Moreover, every reduction sequence necessarily terminates when starting from a well-typed term or 
spine. We have indeed the following theorem, proved in [CP97]. 

Theorem 2.6 (Strong normalization) 

i. If T; A (-£ U : A, then U is strongly normalizing, 

ii. If T; A hs S : A > a, then S is strongly normalizing. □ 

With these two theorems, we easily prove that every well-typed term in 5~>--0&T has a unique canonical 
form with respect to the notion of reduction given in Figure 3. We write Can(C7) for the canonical form 
of the term U with respect to these reductions, and similarly for spines. 



2.3    Head-Normal Forms in the Spine Calculus 

We call two 5~*"~°&T terms equal if it is possible to rewrite them to a common reduct by means of the 
rules in Figure 3. Our notion of equality is therefore syntactic equality considered modulo /^-reduction 
(recall that we assume to start always with terms in ?7-long form). The problem of whether two terms are 
equal is undecidable in the general case, in particular in the presence of ill-typed terms. Indeed, while 
recognizing two equal terms as such can always be done in a finite number of steps, establishing that 
they differ can go beyond the power of automation if these terms admit infinite chains of reductions. 

This issue does not arise if we limit our attention to well-typed terms (as we do in this paper) since, 
by the strong normalization theorem 2.6, every reduction sequence starting at a typable term necessarily 
ends with a canonical form after finitely many steps. Since canonical forms are unique, a simple way to 
decide whether two terms U\ and U^ satisfy our notion of equality is to compute their canonical form 
and check whether Can(£/i) and Can^) are syntactically equal (modulo renaming of bound variables, 
as always). 

If JJ\ and Ui are indeed equal, then this method is often very efficient. However, it performs poorly 
on average since it might do large amounts of unnecessary computation when they are not equal. Assume 
for example that U\ and U2 are the root terms c\ ■ Si and C2 • £2 > respectively, with C\ and ci different 
constants and Si and 52 some (possibly very complex) spines. Then, looking at the heads of U\ and U2 
suffices to establish that they cannot be reduced to a common term. Computing their canonical form 
requires instead visiting the whole terms and possibly reducing deep redices unnecessarily. Reduction 
to canonical form performs poorly also when used in unification, as we will see in the next section. 
Intuitively, a solution is computed in stages and each stage produces a redex that needs to be normalized 
in order to proceed. Using reduction to canonical form for this purpose is inefficient since it would cause 
the same term to be traversed over and over. 

We overcome these deficiencies by considering head-normal forms. A term is head-normal if it is 
canonical except for the possible presence of /?-redices within a spine, i.e. in an argument position. 
Head-normal roots are called weakly head-normal terms and will be our primary focus. A (weakly) 
head-normal term consists therefore of a superficial layer that is redex-free and a deeper layer that is 
arbitrary. Canonical terms are simply hereditarily head-normal, and reduction to canonical form can 
be implemented by iterated reductions to head-normal form with the advantage that each stage of the 
process can be interleaved with other operations, such as detecting failure in an equality test, or equation 
simplification in a unification problem. 

In this section, we will study head-normal forms and discuss an algorithm to achieve them. The results 
below hold in particular in the more specific case of weakly head-normal term. We will apply the latter 
notion to improve our naive equality test in Section 2.4. Its applications in the context of unification will 
appear in Section 3. 

The basic reduction relation —y, given in Figure 3, is built by congruence over the five /?-reduction 
rules of 5->--0&T and constitutes the basis of the notion of canonical form. The reduction relation 
consisting solely of these /?-reduction rules is called weak head-reduction and will be indicated as —►. It 
is only applicable to terms that are roots, and therefore of base type since we operate on ?7-long terms 
only.  We formally define it in the upper part of Figure 4.  Its reflexive and transitive closure, denoted 

—>*, permits forming chains of basic /^-reductions.  It can be easily proved that the rules obtained by 

replacing —> with —>* in this figure are admissible. 

Head-normal terms draw their origin from the head-reduction relation, that we indicate as —>. It 
builds on weak head-reduction by congruence over the term constructors of 5->'_0&T, and therefore 
operates on terms that are not necessary of base type. In particular, root boundaries are never crossed 

and it is not defined on spines. This relation is formalized in Figure 4. We write —^>* for its reflexive and 
transitive closure, which definition is given at the bottom of this figure. As with weak head-reduction, 

the rules obtained by replacing —A- with —->* in this figure are admissible. 

Observe that weak head-reduction coincides with the head-reduction relation for roots. Therefore, 
by virtue of the subject reduction lemma below, every property of the latter relation holds (sometimes 
trivially) for its weak counterpart.   In the sequel, we will rely exclusively on the weak head-reduction 



Weak head—reductions 

(H ■ S) • NIL ^ H ■ S 

■ whr_nil 

(U,V)-(mS) ^ U-S 

■ whr„betaJst 

(U, V)-{-K2S) ^ v-s 

■ whr_beta_snd 

- whr_beta_lin - whr_beta_int 

(\x:A.U)-V',S ^ [V/x]U-S (\x:A.U)-V;S ^ [V/x]U-S 

Congruences (head—reduction only) 

u ^ u' 
u A u' 

u hr^ u' 
(U,V) 

hr (U' V) 

u hr u' 

hr_pairl 

hr_.llam 

v -^ v 

\x:A.U -^ \x:A.U' 

(U,V) -^ (U,V) 

U A U' 

\x:A.U -^ Xx-.A.U1 

■ hr_pair2 

■ hr_ilam 

Iteration (weak head—reduction) 

v   whr   v TT   w   y * Tl'     TT' \ * TT" 
whr * 

u vJh^*v u ^*u 
■ whr*_trans 

II   whl\ * TT" 

Iteration (head —reduction) 

u -^ v 
U -^W U -ÜVI7 

u ^*u'  u' ^*u" 
u -=Vcr 

Figure 4: (Weak) Head-Reduction for S o&T 

relation, although in this section we will study the more general head-reduction relation. 

Notice that, beyond the arrow decoration, the rules for —^ displayed in Figure 4 are a subset of the 
rules given for —> in Figure 3. This implies that (weak) head-reduction is a sub-relation of the general 
notion of reduction for 5_>_0&T. This simple fact is formally expressed in the following lemma. 

Lemma 2.7 (Reduction subsumes head-reduction) 

hr 
U', then   U —4 U'. 

hr 

if u 

Proof. 

The formal proof proceeds by induction on the structure of a derivation W of U -^ U'. 

Head-reduction and its weak variant enjoy many of the properties that hold for —>, and similarly 
for their reflexive and transitive closures. The above lemma permits significant simplifications of their 
otherwise rather involved proofs. The first of these results is an adaptation of the strong normalization 
theorem. Notice that this result is stated for terms only, and not for spines. 

hr 

Theorem 2.8 (Strong normalization for head-reduction) 

If T; A \—£ U : A, then U is strongly normalizing with respect to 

Proof. 

Assume we have a (possibly infinite) sequence of terms Uo,U\,U2, ■■• such that U = UQ and there are 
derivations for each of the following reductions: 

TT      hr     7-T-      hr     TT      hr 
<T = U0 —r U\  —> t/2  —> ■ ■ ■ 



Since, by Lemma 2.7, every head-reduction derivation corresponds trivially to a valid reduction derivation, 
the following sequence of reductions is derivable: 

a> = U0 —> Ui —► U2 —> ■ • - 

By the strong normalization property for —►, a' must be finite. Therefore, also cr must be finite. Bf 

Next, we prove that —> is confluent, i.e. that if a head-reduction is applicable in two positions in a 
term, then the resulting terms can be reduced to a common reduct by a further application (unless they 
are already identical). Here and in the sequel, we abbreviate the phrases "the judgment J has derivation 
J" and "there is a derivation J for the judgment J" as J :: J. 

Lemma 2.9 (Local confluence for head-reduction) 

If W :: U -^ U' and W :: U -^> U", then either U' = U", or there is a term V such that 

U' -^ V   and  U" -^> V. 

Proof. 

W" and W" can differ only if U contains a subterm U of the form (U\, Ü2) and the two derivations 
proceed by head-reducing different components of this pair. Assume for instance that U\ is reduced to 
U[ in W, and U2 is reduced to V'2 in W. Then U' will contain Ü' = (Ü{,Ü2) and U" will contain 
Ü" = (Üi,Üß. We now obtain V by reducing both Ü' and C>" to V = (Üi,Üfi. 

Formally, the proof proceeds by simultaneous induction on the structure of W and W". $ 

When restricting our attention to weak head-reduction in the above lemma, the existence of W' and W" 
implies that U' = U" since every term of base type can start at most one head-reduction sequence. 

Well-known results in term-rewriting theory [DJ90] permit lifting this property, in the presence of 
termination (Theorem 2.8 here), to the reflexive and transitive closure of the above relation. 

Lemma 2.10  (Confluence of head-reduction) 

If W :: U -^>* U' and W" :: U -^> * U", then there is a term V such that U' -^ * V and 

U" ±1>* V. ü 

We are now in a position to prove the uniqueness of head-normal forms: by strong normalization 
every well-typed term admits only finitely many head-reductions, however the term that is eventually 
produced is the same no matter which redex we start with. 

Theorem 2.11  (Uniqueness of head-normal forms) 

If T; A hs U : A, then there is a unique head-normal term V such that   U —>* V. 

Proof. 

By the strong normalization theorem 2.8, we know that every sequence of reductions starting at U 

leads to a term in head-normal form. Let us consider two reduction sequences validating U —>* V and 

U —>* V", for terms V and V" in head-normal form. By confluence, there is a term V to which both 
head-reduce. However, since there is no head-reduction derivation starting at either V' or V", the only 
way to close the diamond is to have that V' = V" = V, and use rule hr*_refl. Ef 

This theorem entitles us to speak about the head-normal form of a well-typed term U. We will indicate 
this object as HNF([/) for the moment. 

We would like now to characterize the structure of the head-normal forms HNF(Lr) computable with 
the rules in Figure 4. In particular, we want to verify that it corresponds to the informal definition given 
at the beginning of this section. Prior to doing so, we need to show that the head-reduction relation 
respects typing and extensionality. We have the following subject reduction lemma. 
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Lemma 2.12 (Subject reduction for head-reduction) 

If T; A hE U : A   and  U -^ U', then  T; A hE U' : A 

Proof. 
By the subsumption lemma 2.7, there is a derivation of U —> U'. Then, by the subject reduction 

theorem 2.3, T; A hs U' : A. EZf 

This result extends to the reflexive and transitive closure of —>. 

The following lemma entails that, in a head-normal 5-*--°&T term, redices are confined within spines. 
Indeed, the only atomic (weakly) head-normal terms are roots with a constant or a variable as their head: 
redices are excluded. 

Lemma 2.13  (Characterization of head-normal forms) 

If T; A hs U :AandV = HNF([/), then 

• if A = a, then either  V = c ■ S   or V — x ■ S. 

• ifA= T, then V = (); 

• if A = Ai S1A2, then V = (Vi, V2) and V\ and V2 are in head-normal form; 

• if A — A —o B, then V = \x : A. V and V is in head-normal form; 

• if A = A —> B, then V = Xx:A.V and V is in head-normal form. 

Proof. 
By iterated applications of the subject reduction lemma 2.12, we know that there is a derivation U of 

T; A hs V : A. We proceed then by inversion on the structure of U. In particular, if A is a base type, it 
must be the case that V = c-SovV = x-S, otherwise, V would not be in head-normal form. EZf 

The above results imply that head-normalization is a total function from typable 5-^-°&T terms U 
to objects in head-normal form HNF({7). We want now to give an explicit functional definition for this 
operation. To this end, we propose the function (...) defined as follows. 

() = () (H ■ 5) ■ NIL = H ■ S 
(U,V) = (U,V) (U,V)-(TT1S) = U-S 

Xx-.A.U = Xx:A.U (U, V) ■ (TT2S) = V ■ S 

Xx-.A.U = Xx:A.U (Xx:A.U)-(V~,S)  = [V/x]U ■ S 
~c~S = c-S (Xx:A.U)-(V;S)  = [V/x]U-S 
x ■ S = x ■ S 

We need to show that (...) actually computes the head-normal form of any well-typed 5"->--<>&T term. 
We have the following soundness result: if V = U), then U head-reduces to V. 

Lemma 2.14 (Soundness of (...)) 

If there is a term V such that U = V, then   U —>* V. 

Proof. 
By induction on the computation of U. Ef 

The completeness property below states that (...) computes precisely head-normal forms. 

Lemma 2.15  (Completeness of (...)) 

If U —>■* V   and V is in head-normal form, then U is defined and U = V. 
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Proof. 
This proof proceeds in two steps. 

1. Every derivation of   U —>■* V   can be transformed into a derivation of the same judgment such 
that: 

Refiexivity (rule hr*_refl) is only applied to terms of the form (), c • S or x ■ S; 

Transitivity (rule hr*_trans) is only applied either to terms of base type (roots) or to pairs, 
in which case its right premiss ends in rule hr_fst and its left premiss ends in rule hr_snd. 

We omit the proof of this simple property. 

Then, we proceed by induction on the stru 
characteristics. Ef 

2. Then, we proceed by induction on the structure of a derivation W of  U —>* V   with the above 

Notice that neither the soundness nor the completeness lemma above mention typing information. 
Their generality specializes to the well-typed terms we are interested in as a special case. Observe 
however that (...) can diverge when applied to certain ill-typed terms. 

Thanks to the subject reduction lemma 2.12, the above properties imply that, whenever applied to 
a (well-typed) term of base type, (...) computes its weak head-normal form. Therefore, whenever U is 
some term of base type, U will denote its weak head-normal form. 

We conclude this section by proving a technical lemma that establishes the connection between head- 
normalization and canonical forms. A head-normal form can be seen as an intermediate stage towards 
reaching a canonical form. By virtue of the strong normalization theorem above, this lemma justifies 
iterated head-normalization as a specific reduction strategy to canonical form. 

Lemma 2.16 (Connection between head-normal forms and canonical forms) 

If T; A hE U : A   and   U = V, then Can(U) = Can(V). 

Proof. 
By the soundness of (...), since U = V, we have that U —> * V and consequently U —>* V 

by subsumption. By subject reduction, we deduce that F; A hs V : A and therefore, by the strong 
normalization theorem 2.6, both Can(£7) and Can(^) exist and U —>* Can(J7) and V —>* Can(K). 
Now, since canonical forms are unique, we derive that Can(£/) = Can(K). Ef 

2.4    Equality in the Spine Calculus 

In the previous section, we defined two 5^-°&T terms U\ and U2 to be equal if they can be /3-reduced to 
a common term V. We observed that, by strong normalization and the Church-Rosser theorem [CP97], 
it suffices to compute Can([/i) and Can(f/2) and check whether they are syntactically equal (modulo 
renaming of bound variables). We noticed however that this method for testing equality involves a 
high overhead in case of failure, and that reduction to canonical form is inefficient when dealing with 
unification, a problem closely related to equality checking (see Section 3). 

In this section, we propose an alternative algorithm for verifying that two 5-^-°&T terms are equal. 
This efficient method is based on weak head-normalization and parallels the use of this form of reduction 
in the pre-unification algorithm discussed in Section 3. We will prove that it is indeed equivalent to the 
naive procedure based on comparing canonical forms. 

This test, that we will sometimes identify as staged equality, is based on the following equality judg- 
ments for terms and spines, respectively: 

T; A hg U\ — U2 '■ A U\ and U2 are equal terms of type A in T; A and £ 
T; A h-£ Si = S2 '■ A > a S\ and S2 are equal spines from heads of type A to terms of type a in 

T;A and S 
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r; A HE U ■ Si = H ■ S2 : a T;A\-sH-S1=U-S2:a 
  Seq_redex_l   Seq_redex_r 

r; A HE U ■ Si = H • S2 : a T; A HE H ■ Si = U ■ S2 : a 

T;A HE,C:.4 SI =S2 :A>a 
- Seq-con 

T; A HE,C:.4 C- SI = c ■ S2 : a 

T;A HE Si = S2 : A > a T,x:A;A Hs Si = S2 : A > a 
■ Seq_lvar   Seq_ivar 

T; A, x: A \~s x ■ Si = x ■ S2 : a T, x: A; A HE X ■ Si = x ■ S2 : a 

T; A HE Ui = Vi : Ai    T; A HE U2 = V2 : A2 
■ Seq_unit   Seq_pair 

T;A Hs () = {}:T T;A HS {UUU2} = (VI,V2) :AikA2 

T;A,x:A HE U = V : B Y,x:A;A<rzU = V:B 
  Seq_llam   Seq_ilam 

T;A Hs \x:A.U = \x: A.V : A-o B T; A HE \X:A. U = Xx: A. V : A -»• B 

Spines 
■ Seq_nii (No spine rule for T) 

f; -HE NIL = NIL : a > a 

T; A HE Si = S2 : Ai > a T; A HE 5I = S2 : A2 > a 
■ Seq_fst   Seq_snd 

F; A HE TTI SI = m S2 : Ai & A2 > a T; A HE ir2 Si = w2 S2 : Ai & A2 > a 

T; A' HE UI = U2 : A    T; A" Hs Si = S2 : B > a 

r;A',A" HE Ui'Si =U2~,S2 :A-oB>a 

T; • HE UI = U2 : B    T; A HE Si = S2 : B > a 

T;A HE UI ; Si = U2; S2 : A -> B > a 

- Seq_lapp 

■ Seq_iapp 

Figure 5: Equality in S' ► -o&T 

The inference rules defining them are given in Figure 5. These rules are type-directed and their correctness 
and termination rely heavily on the assumption that the involved terms are T^-long and have a canonical 
form. This requirement entails the fact that two terms of compound type cannot be equal unless their 
top-level constructors are the same and their subterms are recursively equal; rules Seq_unit to SeqJlam 
in the top part of this figure take advantage of this fact. A similar property applies to spines and is realized 
by the rules in the bottom part of Figure 5. This characterization is complete in the case of roots (the 
only terms of base type) only if both heads are a constant or a variable. If the head of either root is a 
generic term, we first need to reduce the resulting redex. In this situation, we avoid the drawbacks of 
reduction to canonical forms by using weak head-normalization in rules Seq_redex J. and Seq_redex_r 
(recall that the function (...) computes weak head-normal forms when applied to terms of base type). 
This will have the effect of exposing a constant or a variable as the head of our terms. We will be able 
to compare these heads directly before verifying the equality of the associated spines (rules Seq_con, 
SeqJvar and SeqJvar). Redices possibly appearing in the latter will be handled similarly. This way of 
proceeding corresponds to imposing a reduction strategy guided by weak head-normalization in order to 
handle the redices occurring in terms. 

The typing information in the equality judgments is convenient when proving properties, especially 
those concerning unification in the next section. It is however redundant as long as we assume that the 
terms we start with are ?j-long and have a canonical form. Therefore, it can safely be omitted altogether 
when implementing this procedure. 

We call a derivation £ for the equality judgment T; A Hs U\ = U2 ■ A well-typed if there exist 
typing derivations Hi and U2 of T; A Hs Ui : A and T; A Hs U2 : A, respectively. Notice that not 
every equality derivation is well-typed since the appeals to weak head-normalization in rules Seq_redex J 
and Seq_redex_r might eliminate ill-typed subterms. This property holds however if U\ and U2 are in 
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canonical form. Similar considerations apply to the spine equality judgment. 

We will now prove that the deductive system given in Figure 5 does implement an equality test as 
defined at the beginning of the previous section. We first prove the soundness of this procedure, i.e. that 
every time it claims that two terms are equal, they actually are. The involved terms are not required to 
be well-typed. 

Theorem 2.17 (Soundness of staged equality) 

i. // £ :: T; A hs Ui = U2 : A, then   Caa(Ui) = Can(£/2); 

ii. If £ :: T; A hs Si = S2 ■ A > a, then  Can(Si) = Can(S2); 

Proof. 

The proof proceeds by induction on the structure of the derivation £. All cases match trivially the 
rules in Figure 3, except for derivations that end in Seq_redexJ or Seq_redex_r. In these cases, we 
take advantage of the connection lemma 2.16 and of transitivity. Ef 

Next, we need to show that whenever two terms (or spines) are equal according to our definition, 
then there is a derivation for the corresponding staged equality judgment. We equip the statement of 
this theorem with typing assumptions to ensure the existence of the claimed canonical forms. This also 
establishes the origin of the type, contexts and signature appearing in the equality judgments. However, 
a more Spartan version of this theorem, devoid of any typing assumption, also holds: only the existence 
of a canonical form for the terms involved is required. 

Theorem 2.18  (Completeness of staged equality) 

i. Let  £1 :: T; A hs Ux : A   and  £2 :: T; A hs U2 : A. 
If Can(t/i) = Can(*72), then   T; A hs Ui = U2 : A. 

ii. Let  £1 :: T; A hs Si : A > a   and  £2 :: T; A r-s S2 : A > a. 
If Can(Si) = Can(S2), then   T;A\-sSi = S2:A>a. 

Proof. 

The proof proceeds by nested induction over computation of Can(f/i) and C&n(U2), measured as the 
sequence of /^-reductions, from Ui and U2 (Si and S2) to Can(£/i) and G&n(U2) respectively (Can(Si) 
and Can(S2) respectively), and the structures of £\ and £2. We distinguish cases depending on the last 
rule applied in £\ and £2, or equivalently on the structure of U\ and U2 (or Si and S2). 

Unless either derivation ends in rule lS_redex, the cases are handled trivially since each of these typing 
rules corresponds to a uniquely determined equality rule. The induction hypothesis can be applied to the 
premisses of these rules since the sequence of reductions does not change, but the involved derivations 
are simpler. 

We map occurrences of rule lS_redex in £\ to applications of rule Seq_redexJ, and its occurrences 
in £2 to uses of Seq_redex_r. Rule lS_redex witnesses the presence of an exposed redex in U\ (U2) so 
that we can apply weak head-normalization to this term. By the subject reduction lemma 2.12, Ui (U2) 
has a typing derivation £[ (£2)- We can therefore apply the induction hypothesis since the sequence of 
reductions is shorter, although the structure of £[ (£'2) might be very different from that of £ 1 (£2).     Ef 

We conclude this section with a collection of properties of the equality judgments. More precisely, we 
establish that it is a congruence relation relative to the two terms it equates. 

Lemma 2.19 (Equality induces a congruence) 

• Reflexivity:      If T;A hs U : A, then   T;A hs U = U : A. Similarly for spines. 

• Symmetry:      If T; A hj U\ — U2 : A, then   T; A hj U2 — U\ : A. Similarly for spines. 
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Partial roots 

r-,A'\-zU:A    T;A" \-x S~.A>B 
■ pS_redex 

r;A',A" hE U-S~.B 

r;A \-S,C:A S~.A>B r;AhE5:J4>B T,x: A; A hE 5 T A > B 
 pS_con  pS_lvar  pS_ivar 

r;A \-s,C:A c-S-.B V;A,X:A\-T, x-S~.B Y,x:A\A\-zx-S~.B 

Partial spines 
- pS_nil 

T; • hs NIL T A > A 

r;A hs ST Ai >B T;A hs S~.A2 >B 
(No pseudo-spine rule for T) ps_fst Ps_snd 

T;A hs mS~.A1k.A2 > B T;A hs ■K2S~.AI&LA2 > B 

T; A' \-z U : Ä!    T;A" \-z S~.A2> B T;-\-sU:Ai    T;AhsS~A2>a 
  pS_lapp  pS_iapp 

r;A',A" hE U',S~.Ax^>A2 > B T;A Hs U;S~Ai -»• A2 > B 

Figure 6: Typing for Pseudo-Spines and Pseudo-Roots 

• Transitivity:    If T;A hs  \JX = U2 : A   and   T;A hs U2 = U3 ■ A, then   T; A l-s  Ui = U3 : A. 
Similarly for spines 

• Congruence: 

- If T-Aux-.A \-s U :B  and T;A2 hs Vi = V2 : A, then T;A1,A2 hE [Vi/x]U = [V2/x]U : 
B. 

- If r,i:A;AhE U : B   and T; ■ hs Vx = V2 : A, then  T;A hs [Vi/x]U = [V2/x]U : B. 

Similarly if the first assumption is a spine typing judgment. 

Proof. 
Refiexivity is a direct consequence of strong normalization, the uniqueness of canonical forms and the 

above completeness theorem. 

The remaining properties are proved my means of simple inductive arguments. However, had we 
assumed that the terms they mention are well-typed, their validity would be a direct consequence of the 
soundness and completeness of staged equality. Bf 

In the remainder of this paper, we will always assume that our equality derivations are well-typed 
and therefore omit explicit typing judgments for their sides. 

2.5    Eta-Expansion in the Spine Calculus 

In Section 2.1, we observed that, given a declaration x : A the ?y-long form of a variable x corresponds 
to Can(«) in A_*'_0&T. A similar notational trick is not viable in the spine calculus since a variable is a 
head while the reduction semantics of S~*~°kT is defined only for terms and spines. In this section, we 
will present a method for computing the j^-long form of a variable at a given type, and prove typing and 
reduction properties about these objects. This method can easily be generalized to generate the ??-long 
form of arbitrary 5-^"-°&T terms. 

The procedure we will develop relies on the notion of partial spine, a technical device required to 
cope with the fact that, during ^-expansion, spines are built from the outside in. Partial spines are 
syntactically undistinguishable from spines (see the definition in Section 2.2), but they obey a different 
typing semantics: they lift the requirement that the target type of a well-typed 5->"-0&T spine be a base 
type. We rely on the symbol S, possibly subscripted, as a syntactic variable for partial spines. 
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We will also make use of objects that differ from roots for the fact that they pair up an 5^-°&T head 
H, as defined in Section 2.2, and a partial spine S. Such entities, called partial roots, are denoted H ■ S. 

The distinguishing characteristic of the typing policy of the entities we just introduced with respect 
to the related g-»—°&T concepts is that partial roots are not required to be of base type. Consequently, 
we relax the constraints on the target type of a partial spine by admitting compound types in addition 
to base types. The typing semantics of partial spines and partial roots is formalized by means of the 
judgments 

T;A\-S S~B>A and r; A hs H ■ S : A, 

respectively. Notice again that the type A is arbitrary while it is bound to be a base type in the 
corresponding 5^-°&T relations. The definition of these judgments is displayed in Figure,6. It parallels 
the rules for spines and roots given in Figure 2. The base case in rule pS_nil handles the end of spine 
marker. It differs from the treatment of NIL in rule lS_nil by lifting the commitment to base types. 

Observe that the definition of typing for partial spines and partial roots accesses the term typing 
judgment of S^f~cScT in rules pS_redex, pS Japp and pS Japp. This means in particular that roots 
possibly occurring in the arguments of a partial root or spine must have base type. Therefore, the 
deviation to the typing policy of S~*~°^T permitted by partiality is confined to the most shallow layer 

of terms. 

We rely on partial spines and derived notions as a means to denote and manipulate 5^-°&T terms 
that are not in jy-long form. Notice indeed that there is a derivation of the judgment 

x:ak, (a—oo); • hg x ■ NlL~a& (a—oa) 

since NIL is a valid partial spine of type a & (a -o a). Instead, the corresponding 5-*--°&T judgment is not 
derivable because x ■ NIL is not in ?7-long form (i.e. it is not of base type). Instead, replacing this term 
with its ^-expansion, (x ■ 7Ti NIL, Xy.a. x ■ (y ■ NIL) ? 7r2 NIL) , (written (FST X, Xy.a. (SND x)"y) in A->-0&T) 
yields a derivable S^~°^T judgment. Not every typable term that fails to be 77-long is expressible in 
our extended language, but sufficiently many are in order to achieve the ^-expansion of variables (in 
particular, our definition requires partial spine arguments to be 77-long). 

Partial root and spine typing is a conservative extension of the typing semantics of S^~°^T roots 
and spines. Indeed, any well-typed root (spine) in ,$-*-0&T admits an isomorphic derivation according to 
the rules in Figure 6, and conversely every partial root of base type (partial spine of base target type) is 
typable according to the typing semantics presented in Section 2.2. This intuition is formally captured 
by the following lemma. 

Lemma 2.20  (Partial typing conservatively extends typing) 

i. T, A hs H ■ S T a   if and only if T; A \~s H ■ S : a >; 

ii. T; A hs S~. B > a   if and only if T; A hj; S : B > a. 

Proof. 

Each direction of the proof proceeds by mutual induction on the given derivations. Ef 

This lemma implies that 5-*--°&T roots and spines are semantically (and of course syntactically) special 
cases of the partial roots and spines we just defined. Therefore, in most results below, a spine (root) can 
be supplied whenever a partial spine (root) is expected. We will take advantage of this possibility in the 
sequel. 

Given a partial spine S, the concatenation of S with another partial spine 5', denoted S@S', con- 
structs the partial spine S" obtained by replacing the trailing NIL of S with S'. A formal definition is 
given as follows. 

NIL @ S' = S' 
(TTI S) @ S' = ffi(5@5') 
(n2S)@S' =   7T2{S@S') 

(V?5)@5' = vus@s') 
(V;S)@S' = V;(S@S') 

16 



It is easy to ascertain that @ is a total function of its two arguments. Concatenation is associative, as 
expressed in the following lemma. 

Lemma 2.21  (Associativity of partial spine concatenation) 

(S@S')@S" = S@(S'@S") 

Proof. 
This statement is proved by induction on the structure of the partial spine S. Ef 

Many properties of the typing judgments of S^~°^T extend to the current setting. In particular, 
weakening and promotion apply to partial spines and partial roots. We do not show their updated 
statement for the sake of economy, but we will rely on them in the sequel. In addition to these properties, 
the following lemma gives the typing properties of the concatenation operation. It will play a key role in 
the proofs below. 

Lemma 2.22 (Transitivity of partial spine typing) 

If S::T;Ahs S~.A>A'   and T;A' hs S'~A'>B, then  T;A,A' hs S@S' 7 A> B. 

Proof. 
This proof proceeds by a simple induction on the structure of S. Bf 

By inspection of the typing rules of 5_>'_0&T, it is easy to observe that no valid spine can have a 
source type of the form T, or o-oT, or more in general any type which result type is T (i.e. T or a 
type containing a positive occurrence of T as the right hand-side of linear or intuitionistic implication). 
No such restriction applies to partial spines because of the generality of rule pS_nil; for example, this 
rule alone constitutes a derivation of the judgment T; ■ hs NIL 7 T > T. This indicates that partial 
spines are a more general approximation of the notion of spines than we actually need. However their 
application in ^-expansion does not make use of their full generality when dealing with types having T 
as their result type. 

The reduction semantics of S~>'~oScT extends without changes to partial roots and partial spines. In 
particular, we will make heavy use of weak head-reduction on partial roots. We adopt the notation already 
defined for 5^~°&T. Many reduction properties of 5-*--°&T apply naturally to our extended setting. The 
most important for our purposes is subject reduction and the substitution lemma. We will also take 
repeated advantage of the statement below, that describes the interaction between concatenation and the 
reduction of partial roots. 

Lemma 2.23 (Concatenation) 

Let n be a derivation of Hx • Si -^* H2 ■ S2.  Then, Hi ■ (Sx @ S) -^V H2 ■ (S2 @ S)   is derivable. 

Proof. 
By induction on the structure of 1Z. Ef 

Our ^-expansion procedure is formalized by means of the judgment 

iAst> u 
which is defined in Figure 7 by induction on the type A. In this judgment, x is the variable to be 
^expanded, A is initially set to its type and then to subexpressions of this type, and the partial spine 
S serves as an accumulator for the spine S to which x should be applied. The term U corresponds to 
intermediate stages of the construction of the 77-expansion of x. We will see that, given a variable x and 
a type A, there is always a term U such that the judgment 

x—»NIL D> U 
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i4s > £-(S@NIL) 

■ Sexp_root 

x -A S @ (TTI NIL) > Ui    x -^ 5 @ (TT2 NIL) > U2 
- Sexp_unit  Sexp_pair 

x^+S>{) x-Al*L*>+s> {UUU2) 

y-±>mht>V   X-^S@{V~,NIL) D> U y-^NiLoV   x -As@ (V;NIL) > £/ 
 Sexp_llam   Sexpjlam 

ii^}Ä > Äy:AC/ a:   A "* B) S > Ay: At/ 

Figure 7: Variable ^-Expansion in 5" »■-o&T 

is derivable, and this term is precisely the ^-expansion of x at type A. 

We start by proving that the judgment x —>• S > U as defined in Figure 7 is a total function of the 

variable x, the type A and the partial spine S. 

Lemma 2.24 (Functionality of n-expansion) 

For every variable x, type A and partial spine S, there is a unique term U such that the judgment 

x As > u 
derivable. 

Proof. 

The proof proceeds by an easy induction on the structure of A Ef 

We would like now to show that what this procedure computes, when given a variable x, a type A 
and the end of spine NIL, is the ^-expansion of x at type A. For our purposes, it will be sufficient to 
show that the object U it outputs has type A in a context consisting solely of x : A. In order to prove 
this property, we need to generalize it to consider intermediate stages of the construction of U. We have 
the following lemma. 

Lemma 2.25  (Well-typedness of n-expansion) 

A 
Assume that there is a derivation % of the judgment x—>S > U. Then for all contexts T and 

A and type B such that the judgment T\ A hs S 7 B > A is derivable, there is a derivation of 
T;A,x:B hs U : A. 

Proof. 

This proof proceeds by induction on the structure of ~H or equivalently on the type A We give the 
details of the most significant cases. 

A- a: Then 
7^ =  Sexp_root 

x-^-S D> x-{S@mh) 

with U = x -(5@NIL). 

Assume there is a derivation of  T; A hs S~. B > a. By rule lS_nil, the judgment   T; ■ hs NIL : 
a > a   is derivable. Therefore, by the transitivity lemma 2.22 there exists a derivation of 

T;A hs 5@NIL :B>a. 

Then, it suffices to apply rule lSJvar to obtain the desired derivation of 

T;A,x:B hs a;-(5@NlL) : B. 
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A = T: Then, 
% —  Sexp_unit 

a: -^ S > (> 

with C/ = (). 

Rule lS_unit constitutes a derivation of T; A hs () : T for any contexts T and A. In particular, 
this result holds for contexts T and A = A', x: B such that  T; A' hs S T B > T. 

A = Ai&A2: Then 

a:-^5@(7riNiL) > I7i    a;-^5@(7r2NiL) > U2 
■^ — Sexp_pair 

a  Al&zA2)S\> (UuUi) 

with U = (UUU2). 

Assume that <S::F;A \-£ S~.B> Ai&zA2. By chaining rule pS_nil with pS_fst and pS_snd, we 
can ^achieve derivations Si of T; ■ hs 7r8- NIL 7 Ai & ^2 > A', for i = 1, 2. By the transitivity lemma 
on S and 5», we obtain derivations 58- of 

T;A hs 5@(7TiNiL)Tß> A,-. 

By two applications of the induction hypothesis to %i and SI, there are derivations of T; A,* : 
B hs Ui : Aj. Using rule lS_pair yields the desired derivation of 

T\A,x:B hs (Ui,U2) : AlkA2. 

A = Ai-oA2: Then, 

y-^NlL D> F'    a:-^S@(V'?NlL) > V 
% — SexpJlam 

x  Al^A3)S t> Xy.Ai.V 

with U = Xy.Ai.V. 

By induction hypothesis on 7ii, for every T, A and B such that S$n :: T; A hs NIL T B > A\, 
there is a derivation of F; A,y:B hs V' : -4i- Notice however that «S—, can only result from the 
application of rule pS_nil, forcing A = • and B = A\. Therefore, we have that for every context T, 
there is a derivation Uy of T\y:A\ \-£ V : A\. 

By concatenating rules pS_nil and pSJapp relative to Uy, we produce a derivation of the judgment 
T;y:Ai \-£ V'jNIL ~. A\-o A2 > A2. Assume we are given a derivation 5 of T; A hj S : ß > 
Ai —o A2. Then, an application of the transitivity lemma yields a derivation S' of 

r;A,y:i4i hs S@ (V ;NIL) : B > A2. 

Therefore, by induction hypothesis on %2 and S', the judgment 

T;A,y:Ai,x:B hE V : A2 

is derivable. Application of rule IS Jlam yields the desired derivation of 

T;A,x:B \-z Xy:Ai.V:Ai-oA2. 

A — A\—±A2' The proof proceeds similarly to the previous case, except for the need to use the pro- 
motion lemma 2.2. Bf 
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A stronger version of this property holds when the result type of A is T, as can be observed from 
the way we handled the case where A = T. Indeed, given an 77-expansion derivation H :: x —yS > U, 
it is easy to show that, in this specific situation, for every contexts T and A, there is a derivation of 
r;A r-£ U : A (the assumption x : B is not needed). We will not need to take advantage of this 
specialized property. 

The above lemma specializes to the following corollary when we are in the initial configuration. 

Corollary 2.26 (Well-typedness ofr\-expansion) 

If U :: x —»-NIL > U, then   ■;x:A hs U : A   and  x:A; ■ hs U : A. 

Proof. 

By the above lemma, for all T, A and 5j3uch that S :: T; A hs NIL T B > A, there is a derivation of 
r; A, x: B \-£ U : A. Notice however that S can only result from the application of rule pS_nil, forcing 
A = • and B = A. By further choosing T = •, we obtain the desired derivation of  •; x :A \-£ U : A. 

A derivation of x: A; ■ l~s U : A  is then obtained by appealing to the promotion lemma 2.2.        BZf 

We will call the unique object U such that x—»NIL D> U is derivable the 7]-expansion of variable x 
at type A and denote it as x£. 

We conclude this section with a technical property concerning the reduction of ^-expanded variables. 
As for the previous results, we will need only a very specific instance of a more general lemma. However, 
we shall state it in its full generality in order to be able to prove it. In this statement, we make use of 
our extension of the notion of reduction to partial roots. 

Lemma 2.27 (Reduction of r/-expanded variables) 

i. If n-.-.x-^-S > U   and S ::T;A hs S :A>a, then   U -S —>* x-(S@S). 

ii. If % ::x-^S > U,   S :: T; A hs S : B > A, x does not occur free in S,   U :: T; A' hs  V : B 

Hi. If U ::T,z:B;A\-s U : A, then   [x%/z]U —>* [x/z]U. 

and  V ■ S -^>* U* ■ NIL, then   [V/x]U —>* U* 

iv. If S ::T,z:B;AhB S :A>a, then   [x»/z]S —>■* [x/z]S. 

Proof. 
This rather involved proof proceeds by simultaneous induction over the structure of S in (i), of U* 

in (ii), of U in (Hi), and of S in (iv). More precisely, we admit appealing to the induction hypothesis in 
the following circumstances: 

• Given a spine S in (i), we will induce on (i) for spines S' smaller than S, and on (ii) for terms U* 
contained in S. 

• Given a term U* in (ii), we will apply the induction hypothesis (ii) to term U** that differ from a 
subterm U" of U* only by the renaming of a free variable (if U** = [x/z]U" for example). We will 
also appeal to (Hi) on terms U smaller than U*. 

• Given a term U in (Hi), we will induce on (in) for subterms of U, and on (i) and (iv) for spines S 
embedded in U. 

• Finally, given a spine S in (iv), we will access either (iv) on spines 5' smaller than S, or (Hi) on 
subterms U of S. 

We will now outline the development of a number of significant cases. We distinguish cases on the basis 
of the type A appearing in the various parts of this lemma. 
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(i) A = a: By inversion on S and %, it must be the case that 5 = NIL and U = x ■ (5@NIL). Then, by 
rule Srjnil, 

U-S = {x-{S@mh))-mL —> x-{S@mt) = x-{S@S) 

(i) A = T: By inversion on S, this case cannot arise. 

(i) A = A\ & A2I By inversion on %, we deduce that U = (?7i, ^2) and that there are derivations of 

x —L>-5@ (7Tj NIL) > £/,■   for i = 1,2. Furthermore, inversion on S opens two alternative courses: 

• S = 7Ti 5i and <Si :: T;A  hs  5i : Aj > a.   By induction hypothesis, the associativity of 
concatenation and the definition of this operation, •--. . 

Ui -Si —>•* a;-((5@7riNlL)@5i) = x ■ [S@ (TTI NIL @ SI)) = x ■ (5@JTI SI) 

Now, by rule Sr_beta_fst, 

<^l,^2>-7Ti5l   —>   Ul-Sl   —►*   X-(S@TT1S1). 

• S = TTI S2 and »S2 :: T; A hs 52 : ^2 > a. We proceed symmetrically to the previous subcase. 

(i) A = Ax —o A2: By inversion on W, £/ = Xy.Ai. U' and there are derivations of 

Z^NIL [> yjf1        and        x-^ S @ {yf1 *mL) > U'. 

Since j/ is bound in U, we can assume it occurs neither in S nor in S. By further inversion on S, 
we obtain that S = V"]S', A = A', A" and there exist derivations of 

r;A"hsV:Ai        and        IT; A' hE ff : A2 > a. 

The induction hypothesis and the associativity of @ permits concluding 

U'-S' —>■* x ■ ((S@y^-mh)@ff) = x ■ (S@y^-ff). 

We then conclude this case of the proof as follows: 

(XyiA^U^-iVIS')      —»      [V/y]U'-ff by rule Sr_betaJin, 
=       [V/y](U' ■ S") since y does not occur free in S', 

—>*     [^/y](^ • {S@yp IS')) by the substitution lemma2.4 and 
the above induction hypothesis, 

=       x ■ (S @ ([V/yly^1 ~,S')) since y is not free in x, S' and S, 
=       WIl^Vr)11z\(x ■ {S@z~,S'))    for some new variable z, 

—)■*     [Vy.z](£ • (S @ z^S')) by induction hypothesis  (it) and 
the substitution lemma, 

=       x ■ (S@V~,S') by definition of substitution. 

(i) A = Ai —¥ A2: We proceed similarly. 

(ii) A = a: By inversion on %, we have that U = x ■ (S@NIL). By applying the transitivity lemma on 

rule lS_nil and S, we obtain a derivation 5 of T; A hs S@ NIL : B > a. 

Since   1/ • 5 —>•* [/* • NIL   holds by assumption, the concatenation lemma allows us to conclude 
that 

V-(S@ NIL)  —-+'  J7* • (NIL @ NIL) = U* ■ NIL. 

Thus, since x does not occur free in S, we have that 

[V/x](x-{S@mL)) = V-(S@mh) —>* U*-NIL. 
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Finally, by rule lS_redex on U and S, there is a derivation of T; A, A' hs V ■ (S@ NIL) : a, so 
that, by subject reduction, also F; A, A' \~s U* ■ NIL : a is derivable, and therefore by inversion 
on rule lS_redex, there is derivation of F; A, A' bs U* : a as well. Again by inversion, U* must 
be a root. Therefore we can apply rule Sr_nil, obtaining that U* ■ NIL —> U*. By chaining this 
reduction with the previous ones, we get the requested derivation of the judgment 

|V/a:](a:-(5@NlL)) —►* U*. 

(ii) A = T: By inversion on 7i, we deduce that U = (). By rule pS_redex, F; A, A' bs V ■ S ~. T is 
derivable and therefore, by subject reduction, there is a derivation of F; A, A' bs U* ■ NIL 7 T, 
from which we deduce, by inversion, that F; A, A' bE U* : T, and therefore, again by inversion, 
that U* = (). Then, trivially [V/x]Q = {). 

Observe that the treatment of this case relies on the existence of a derivation for T; • h^ NIL 7 T > 
T, that is readily produced by means of rule pS_nil. As we said, concatenating NIL with no 5-*--°&T 

object can yields a well-typed spine. 

(ii) A — A\ & A2- By inversion on Ti, we have that U = (f/i,^) and that there are derivations of 

x -^-> S @ (■Ki NIL) > Ui   for i = 

S, we can produce derivations of 

x —'-*■ S @ (7Tj NIL) > Ui   for i = 1,2. By rules pS Jfst and pS_snd and the transitivity lemma on 

T;A hE 5@(7TiNiL) :B> At. 

By knowing that   V ■ S —^-* U* ■ NIL, we deduce by the concatenation lemma that 

V ■ (S@ Tti NIL)    ►*   U* ■ ■Ki NIL. 

Similarly to the previous case, appeals to rule pS_redex, to the transitivity lemma 2.22 and to 
inversion permit us to deduce that there is a derivation of r;A,A' \~s U* : A1&A2 and thus 
that U* = (UfjUZ) and, once more by inversion, that T;A,A' bs U* : A{. By chaining rules 
Sr_beta_fst and Sr_beta_snd to the reduction sequence above, we obtain that, for i = 1, 2, 

F-(5@7T,-NIL)   ^U*U* -NIL. 

We are now in a position of appealing to the induction hypothesis, obtaining derivations for the 
reduction judgments   [V/x]Ui —>* U*   from which we easily achieve the desired derivation of 

[V/x](UuU2) -^* m,u*2) 

by rules Sr_pairl, Sr_pair2, the definition of substitution and transitivity at the level of reductions. 

(ii) A = Ai —0 A2: By inversion on %, we know that U = \y : A\. U' and that there are derivations 
Tii and 7i2 of 

Z-^NILO?^
1
        and        x^^S@{y^ ;NIL) > U', 

respectively. By the above corollary 2.26 and weakening, there is a derivation of 

T;y:Ai bs y*1 : Ax. 

An application of rules pS_nil and pS Japp yields a derivation of T;y: A\ bs y^1 ?NIL "^41—0^42 > 

Ai. This derivation and S can be combined by means of the transitivity lemma 2.22 into a derivation 
of 

r;A,y:Ai bs 5@(y^;NlL) ~ B > A2. 

By rule pS_redex, subject reduction and inversion, we deduce that U* = Xz : A\.U** and 
T;A,A',z : A\ bs U** : A2 is derivable. By the promotion lemma, there is also a derivation 
of 

r,2:^i;A,A' hs U** : A2. 
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On the basis of these facts, we can now construct the following sequence of reductions: 

V • (S@y^ ?NIL)     -A*     (Xz:Ai.U**) • (NILQt/^1'?NIL)    by the concatenation lemma on the 

assumption   V ■ S —>* U* ■ NIL, 
(Xz:Ai. U**) ■ (y^1 ";NIL) by definition of concatenation, 

[y^1 /z]U** ■ NIL by rule whr_betaJapp 

[y/z]U** ■ NIL by induction hypothesis (iii) and the 
substitution lemma. 

hr 

hr   , 

We can now apply the induction hypothesis, obtaining a derivation of   [V/x]U' —>*   [y/z]U**. 
Then, rule SrJlam yields the desired result: 

[V/x^Xy.A^.U') —>* Xy:A1.[y/z]U** = Xz:A1.U**, 

where the last equality relies on our convention about implicit renaming of bound variables. 

(ii) A = A\ —¥ Ai: We proceed as in the previous case, except that there is no need to appeal to the 
promotion lemma. 

(iii-iv): Most of the cases falling into this category have a simple proof based on straightforward inver- 
sion and appeals to the induction hypothesis. We will concentrate on the case of (iii) where A — a, 
from which we deduce that U = H ■ S for some term H and spine S. We then need to proceed 
by considering the different alternatives for the head H. All these subcases are handled trivially 
except for the situation where H is the variable z. 

Then, by inversion we know that there exist a derivation of   S :: T,z : B;A \~s  S : B > a.   By 
induction hypothesis (iv), we have therefore that 

[xB,z]S  _^*   [x/z]S. 

From <S, it is a simple matter to prove that there is a derivation of T,x:B;A hs [x/z]S : B > a. 

Since, by definition, x—>-NlL > x^  we can apply the induction hypothesis (i) obtaining that 

x [x/z]S —y* x ■ [x/z]S. 

We can now chain these reductions as follows: 

\xBJz\(z ■ S) = x% ■ [x*/z}S -+* xB
n ■ [x/z]S ^* x ■ [x/z]S = [x/z](z • S), 

obtaining in this way the desired result. Ef 

Below, we will only need a very special case of the above lemma, reported as the following corollary. 

Corollary 2.28 (Canonical reduction of rj-expanded variables) 

If T; A r-s 5 : A > a, then   Can(a;^ ■ S) = Can(a; • S). 

Proof. 
By part (i) of the previous lemma and the definition of »7-expansion x£, we know that there is a 

derivation of x^ ■ S —>* x • S. We obtain the desired result by confluence (Lemma 2.5) and strong 
normalization (Theorem 2.6). Ef 

Observe that this property fails as soon as we replace reduction to canonical form with weak head- 
normalization: the shallow reductions performed by the latter operation cope inadequately with the 
thorough transformation resulting from ^-expansion.  Indeed, it is not true in general that, if  T; A h~s 

23 



S : A > a, then   x^ ■ S = x ■ S. As a counterexample, assume the variable x has type A = (a —> a) 
so that 

^ = \f:a-> a. {x ■ ((Xy.a. (/ • (y; NIL)));NIL)), 

and 5 is the spine (Xz:a. (z ■ NIL)); NIL. Then, x ■ S = x ■ S. Instead, 

x£ ■ S — x ■ ((Xy.a. ((Xz:a. (z ■ NIL)) • (y;NIL)));NIL)). 

A further step of/^-reduction is needed to obtain x ■ S from this expression. 

3    Linear Higher-Order Unification 

In this section, we define the unification problem for 5_f_0&T (Section 3.1), show a few examples (Sec- 
tion 3.2), describe a pre-unification algorithm ä la Huet for it (Section 3.3), prove its soundness and 
completeness (Section 3.4), and discuss new sources of non-determinism introduced by linearity (Sec- 
tion 3.5). 

3.1    The Unification Problem 

Equality checking becomes a unification problem as soon as we admit objects containing logical variables 
(sometimes called existential variables or meta-variables), standing for unknown terms. The equalities 
above, called equations in this setting, are unifiable if there exists a substitution for the logical variables 
which makes the two sides equal, according to the definition given in the previous section. These sub- 
stitutions are called unifiers. The task of a unification procedure is to determine whether equations are 
solvable and, if so, report their unifiers. As for A-*", it is undecidable whether two 5~*-o&T terms can be 
unified, since the equational theory of A~*~°&T is a conservative extension of the equational theory of the 
simply-typed A-calculus. 

An algorithm that returns a set of solvable residual equations, besides a substitution with the above 
properties, is called a pre-unification procedure [Hue75]. The idea behind this approach is to postpone 
some solvable equations (the so called flex-flex equations) as constraints instead of enumerating their 
solutions, as done by a unification algorithm. Pre-unification is undecidable in both X~^ and /\

_>_0&T 

since it subsumes deciding whether a set of equations has a solution. 

Logical variables stand for heads and cannot replace spines or generic terms. Therefore, the alterations 
to the definition of 5_S--°&T required for unification are limited to enriching the syntax of heads with 
logical variables, that we denote F and G, possibly subscripted. We continue to write U, V and S for 
terms and spines in this extended language. In order to avoid confusion we will call the proper variables 
of 5,^--°&T parameters in the remainder of the paper. The resulting extended syntax for 5->--°&T Js 

formalized as follows: 

Terms:   U H-S 
Xx:A.U 

Xx:A.U 

(Ui,U2) 

0 

Spines:   S NIL 

U;S 

U~,S 
IT I S   I    7T2 S 

Heads:  H c (constants) 
x (parameters) 

U (redices) 
F (logical variables) 

The machinery required in order to state a unification problem is summarized in the grammar below. 
We will in general solve systems H of equations that share the same signature E and a common set of 
logical variables $. A system can contain both term equations F;A h U\ = U2 '■ A and spine equations 
T; A h S\ = S2 '■ A > a. A solution to a unification problem, also called a pre-unifier, is a substitution 
0 that, when applied to E, yields a system of flex-flex equations Eff that is known to be solvable. A 
flex-flex equation relates roots with logical variables as their heads. This notion of solution, characteristic 
of pre-unification, subsumes unifiers as the particular case in which the residual flex-flex system is empty. 
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Finally, we record the types of the logical variables in use in a pool. 

Equation systems: E 

Flex-flex systems: Eg 

Substitutions: 0 

Pools: $ 

:= ■ | S, (r; A h Ux = U2 : A)  \ E, (T; A h Si = S2 : A > 

:= ■ | %,(r;Ah F1-S1=F2-S2:a) 

:= • | G,U/F 

:= ■ | $,F:A 

a 

We assume that variables appear at most once in a pool and in the domain of a substitution. Similarly 
to contexts, we treat equation systems, substitutions and pools as multisets. We write £ for individual 
equations. The context F; A in an equation £ enumerates the parameters that the substitutions for logical 
variables appearing in £ are not allowed to mention directly. Therefore, legal substitution terms U for a 
variable F:A must be typable in the empty context, i.e. ■; • h-£,$ U : A should be derivable where $ 
includes the logical variables appearing in U (notice in particular that U is purely intuitionistic). This 
is sometimes emphasized by denoting an equation system H as VS.3$.V(E), where the inner expression 
means that the context T; A of every equation £ is universally quantified in front of it. 

A term or spine equation £ can be interpreted as an equality judgment with signature (£,$), where 
again $ includes the logical variables appearing in £. In the following, we will occasionally view an 
equation system E as the multiset of the equality judgments corresponding to its equations. In these 
cases, we write £ :: S to indicate that each equation £, seen as an equality judgment, in the system E has 
a derivation £^. We treat £ as a multiset with elements the derivations £%. We call an equation well-typed 
if the corresponding equality judgment is well-typed. This notion extends naturally to equation systems. 

The usual definitions concerning substitutions [Bar80] are trivially extended to our language. In 
particular, the domain of a substitution 0, denoted dom(0), is the multiset of variables F such that 
U/F occurs in 0, its image, lm(0), is the multiset of the corresponding terms U, and its range, written 
rg(0), is the multiset of logical variables appearing in lm(0). We will always assume the range of a 
substitution to be disjoint from its domain. The application of a substitution 0 to a term U (spine S) 
is denoted [Q]U ([©].?, respectively). We extend this notion to the application of a substitution 0 to 
another substitution 0', written [0]©' and defined as the substitution obtained by applying 0 to every 
term in the image of 0'. We write 0o0' for the composition of substitutions 0 and 0'. These operations 
retain their usual semantics [Bar80] also in our setting. We will take particular advantage of the following 
properties. 

Property 3.1  (Substitutions) 

i.  [0 o ©'][/= [©]([©']£/)   and similarly for spines; 

n. 0o0'= ©,[©]©'; 
Hi. (Associativity) (0 o 0') o 0" = 0 o (0' o 0"). D 

A consequence of (ii) is that [0]©' = (0 o 0')| dom(e')- We define the canonical form of a substitution 
0, written Can(0), as the substitution that differs from 0 by replacing every element U/F in it with 
Can(U) / F, where logical variables are treated as if they were constants. 

Given a signature E, a substitution 0 and a pool <J> that assigns a type at least to every logical 
variable in the domain and range of 0, we say that 0 is well-typed with respect to £ and $ if, whenever 
U/F occurs in 0 and F:A appears in $, there is a derivation of •; ■ hs,$ U : A. Notice that the logical 
variables in rg(0) are again treated as constants. 

The above informal definitions will be sufficient to follow the development of the discussion. It is 
lengthy but not difficult to make them fully formal. We refrain from doing so in order not to blur the 
analysis of our unification algorithm with additional complexity. 

3.2    Examples 

The example given in the introduction clearly shows how linearity restricts the set of solutions found 
by traditional higher-order unification in the absence of linear constructs.   We can indeed rewrite this 
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example in the syntax of \->-°&T (chosen over 5-+-°&T for the sake of clarity) as the following equation 

•;• h F~M = c"M~M : a. 

where we assume M to be a closed term. As we saw, only two of the four independent solutions returned 
by traditional higher-order unification on the corresponding A~* problem are linearly valid. 

More complex situations rule out the simple-minded strategy of keeping only the linearly valid solu- 
tions returned by a traditional unification procedure on a linear problem. Consider the following equation, 
written again in the syntax of \-+-°&T for simplicity, 

x:a,y:a; ■ h F'x^y = c~(Gi x y)~{G2 x y) : a. 

The parameters x and y are intuitionistic, but F uses them as linear objects. We must instantiate F to 
a term of the form Xx': a. Xy': a.c"M\ "M2 where each of the linear parameters x' and y' must appear 
either in Mi or in M2, but not in both. Indeed, we have the following four incomparable substitutions: 

F <— \x' :a.\y' :a.c~{Fl'-x''-y'yF2, Gi <— Xx' :a.Xy' IA.FJVV, G2 <— Xx':a. Xy':a.F2. 
F i—Xx1 :a.Xy':a.c {Fl^xl)^{F2"yl), Gi i— Xx':a. At/:a.Fx V, G2 <— Xx':a.Xy':a. F2"y'. 
F i— Xxl:a.Xy':a.c (Fi V)"(F2V), Gi i— Xx'.a. Xy':a. Fx~y', G2 i— Xx':a. Xy'-.a. F2"x'. 
F <— Xx':a. Xy':a.c'F1'(F2'x' V), Gi <— Xx':a. Xy'-.a. Fu G2 <— Xx':a. Xy':a.F2"x I"■„,< 

Traditional unification on the analogous X~* equation'is unitary and has a single solution: 

F i— Xx':a.Xy':a.c{F1x' y') (F2 x' y'),   d i— Xx':a. Xy':a. Fi x' y',   G2 <— Xx':a. Xy':a. F2x' y'. 

which is not linearly valid. This example also illustrates one reason why linear term languages and 
unification are useful. Linearity constraints rule out certain unifiers when compared to the simply-typed 
formulation of the same expression, which can be used to eliminate ill-formed terms early. 

3.3    A Pre-Unification Algorithm 

Our adaptation of Huet's pre-unification procedure to 5->-°&T is summarized in Figures 8-10. We adopt 
a structured operational semantics presentation as a system of inference rules, which isolates and makes 
every step of the algorithm explicit. Although more verbose than the usual formulations, it is, at least in 
this setting, more understandable and closer to an actual implementation. In this subsection, we describe 
the general structure of the algorithm. We will prove its correctness in Section 3.4 and discuss the specific 
aspects brought in by linearity in Section 3.5. 

On the basis of the above definitions, a unification problem is expressed by the following judgment: 

E\Eff,e 

where, for the sake of readability, we keep the signature S and the current variable pool $ implicit. 
We assume H consists of well-typed equations. The procedure we describe accepts E, $ and E as input 
arguments and attempts to construct a derivation X of S\Sg,<d for some O and "Eg. This could 
terminate successfully (in which case O is a unifier if Eg- is empty, and only a pre-unifier otherwise). 
It might also fail (in which case there are no unifiers) or not terminate (in which case we have no 
information). 

Given a system of well-typed equations 3 to be solved with respect to a signature E and a logical 
variables pool $, the procedure non-deterministically selects an equation £ from E and attempts to apply 
in a bottom up fashion one of the rules in Figure 8. If several rules are applicable, the procedure succeeds 
if one of them yields a solution. If none applies, we have a local failure. The procedure terminates when 
all equations in E are flex-flex, as described below. 

Well-typed equations in ?y-long form have a very disciplined structure. In particular, both sides must 
either be roots, or have the same top-most term or spine constructor. Spine equations and non-atomic 
term equations are therefore decomposed until problems of base type are exposed, as shown in the 
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Term traversal 

E,(T;AhU-Si = H-S2:a)\Eg,& E, (T; A h H ■ Si = U ■ S2 : a) \ Eg, 0 
 pu_redex_l  pu_redex_r 

S,(r;A h U-S! = H-S2:a)\Eff,e E,(T;A h H • Si = U ■ S2 : a) \ Eg, 0 

E\Eg,S 2,(r;A \- U1=V1 :A),{T;A h U2=V2 : B)\Zff,B 
- pu_unit  pu_pair 

E,(r;A h <) = (>:T)\S#,0 E, (r; A h (Uu U2) = (Vlt V2) : A & B) \ Eg, 0 

E,(r;A,j::^ h £7 = V : B) \ Eg, 0 5,(r,i:i;A h (/ = V :B)\5j,6 
puJlam  pu_ilam 

E,(T;A\- Xx:A.U = Xx:A.V :A-oB)\Eff,e E, (T; A h Xx:A. U = Xx: A. V : A -)• B) \ Eg, 0 

Rigid—Rigid 

c:Ai»S    S,(r;Ah 5i = S2:A>a)\5j,0 
 pu_rr..con 

S,(r;A h c-Si =c-52 :a)\Hj,0 

E,(r;A h Si =S2 : A>a)\Eg,e E,(T,x:A;A h Si = S2 : A > a) \ Eg, 0 
- pu_rr_lvar  pu_rr_ivar 

E,(T;A,x:A \- x-Si=x-S2 :a)\Eg,6 E,(T,x:A;A\-x-Si=x-S2:a)\Eg,e 

Rigid-Flex 

F:Ain$    h:B mE,Tor A    E, (r; A h F ■ S2 = h ■ Si : a) \ Eg, 0 
 pu_rf 

E,(T;A\- h-Si=F-S2:a)\Eg,e 

Flex-Rigid 

F:Ain$    ■;■ \- c-S2/Atf Si^V    [V/F]{E, (T; A h F ■ 5: = c • S2 : a)) \ Eg, 0 
■ pu_fr_imit 

E,(T;Ah F-Si=c-S2:a)\Eg,{eo V/F) 

F:Ain$    h:B in E,Tor A    •; • h A ff Si M- V    [V/F](E,{T;A\-F-Si=h-S2:a))\Eg,e 

E, (T; A I- F ■ St = h ■ S2 : a) \ Eg, (0 o V/F) 

Flex-Flex 

- pu_fr_proj 

E# \ Eg, 
■ pu_ff 

Spine traversal 
E\E^,0 
 pu_nil 
S, (r; • h NIL = NIL : a > a) \ Eg, 0 

E,(r;A h Si=S2:Ai >a)\Eg,0 E,{T;A h Si = S2 : A2 > a) \Eg, 0 
■ pu_fst       pu_snd 

E,(F;A h 7Ti5i =iriS2 :AikA2 >a)\Eg,S E,(T;A \- n2 Si = n2 S2 : AI k A2 >a)\Eg,e 

E,(T;A' h Ui=U2:Ai),(T;A" h Si = S2 : A2 >a)\Eg,Q 
■ pu-lapp 

5,(r;A',A" h Ui-Si = U2-S2 : Ai -o A2 > a) \Eff, 0 

E,(r;- h l/i =I72 :Ai),(r-,A h Si=S2 :A2>a)\Eff,e 

S,(r;A h Ui;Si =U2;S2 : Ai ^ A2 > a)\Eg,G 

Figure 8: Pre-Unification in S,-*'~<>&T, Equation Manipulation 

lowermost and uppermost parts of Figure 8, respectively. Then, possible redices are weak head-reduced 
so that both sides of the equation have either a constant, a parameter or a logical variable as their head 
(rules pu_redexJ and pu_redex_r). When these rules can both be used, i.e. if both sides of the equation 
are redices, applying them in any order yields the same result (this a form of "don't care" non-deter- 
minism): we can for example adopt the convention that the left-hand side is always weak head-reduced 
first. 

Following the standard terminology, we call a weak-head normal atomic term H ■ S rigid if H is a 
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Imitation—term construction 

c:A inT,    r;A h Ail S' <-» S 
 fri_con 
T;A h c-S' /atf NILM-C-S 

r;A h tz/Ai frl 5^-Ki   Y;AV- A2^V2 r;A i- u/A2tf s<^v2   r;Ai-^i^vi 
 fri_pairl       fri_pair2 

T; A \- U / Ai k A2 it1 TTI S M- (Vi, V2) 

T;A,x:A h £//öfr' 5 ^ ^ 
■ fri_llam 

r;A h (7/^i &A2 fr1 7r2S<-+(Vi,V2) 

r>:A;A h U/Btf S4F 
 f 

T; A h UIA -> B fr' U- S <-» As: A. "1/ 

Imitation—spine construction 

T; ■ h a 4-' NIL <-> NIL 

T; A h Ai 4.' 5' M- 5 
 1 

r;Ah Ai k,A2 l
L m S' <-> m S 

r;A' h ß4.' 5' M.5  r;A"hA4V 

r;A',A" h A-ofl4'^S'HV;S 
- friJapp 

r;Ahi2 4' s' ^4 s 
T;A h A1&A2I' 7T2 5' ^ 7T25 

r;Ai-B4's'4 5 r; •hi4l^ 

T; A h A -4 B 4.' £/; 5' M- K; S 
fri_iapp 

Projection—term construction 

T;A\- Ain a^ S 
- frp_lvar 

T,x:A;A \- A ? a M- 5 
- frp_ivar 

T;A,x:A h a ff77' NIL <-*■ x ■ S 

V; A h Ai ff S ^ Vi    T; A h A2 M- V2 

T;A h Aifcylz-fr" jri5M-(Vi,K2) 

r;A,a;:yl h B ff 5 <-> V 

■ frp_pairl 

T;A h- A-oBitn U'-S^-Xx-.A.V 
- frp_llam 

r, x: A; A h a ff NIL <-» x ■ S 

T; A h A2 ff S M- 14    ^Ah^HVi 

r;A 1- Aife^2 fr7" 7T2 5M- (v^.vi) 

r,K:A;A h Bff S--> V 

- frp_pair2 

T; A h A -4- S ff f/; 5 -4 A*: A. V 
- frp_ilam 

Projection—spine construction 

r;Ahii|"a45 

T; A I- At & A2 I" a -4 TTI 5 

r;A',A" t- AH)B4',IH^S 

T; • h af a4 NIL 

- frp-fst 

■ frp_nil 

- frpJapp 

r;At- A2 1" a =->S 
frp 

T;A h Ai feAzI" O <-4 7T2 5 

r;A 1- SI" a <-* S T;- H A M- F 
fl 

T; A h A -4 £ I" a -4 V; S 
frp_iapp 

Figure 9: Pre-Unification in S,"+_0&T, Generation of Substitutions 

constant or a parameter, and flexible if it is a logical variable. Since the sides of a canonical equation £ 
of base type can be only either rigid or flexible, we have four possibilities: 

Rigid-Rigid: If the head of both sides of £ is the same constant or parameter, we unify the spines. 

Rigid-Flex: We reduce this case to the next by swapping the sides of the equation. 

Flex-Rigid: Consider first the equation T; A h F ■ S\ = c ■ S2 -a where the head c is a constant. 
Solving this equation requires instantiating F to a term V such that the root V ■ Si reduces to a 
term having c as its head; the resulting spine and 62 are then unified, as in the rigid-rigid case. We 
can construct V in two manners: the first, imitation, builds V around the constant c itself. The 
second, projection, constructs V around a bound variable x that will be substituted via /?-reduction 
to some subterm of Si that might eventually be instantiated to c. In both cases, the head c or x of . 
V is buried under a layer of constructors corresponding to the type of F (or, more to the point, to 
the source type of Si); it is intended to access the subterms of Si once /?-reduction is performed. 
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Constructors 
r;AhaH5,i    F:A "new" 
 raise_root 

T;A h a^F-S 

r;Ah4i^Vi    r; A h A2 -4 V2 
■ raise_unit 

r;AH4() r;A I- AikA2<->{VuV2} 

r;A,x:A h B^V T,x:A;A h B^V 
 raise_llam  raise jlam 

T;&\- A-oB^\x:A.V r;A I- A^B^ \x:A.V 

Spines 

•;• V- a <-4 NIL, a 

r;Aha4S,B r;Aha4S,fl 
■ raise_lapp  raise_iapp 

T;A,x:A h a<->(x*~,S),A-oB T, x: A; A h a M- (a^; S), ,4-> S 

Figure 10: Pre-Unification in 5->-°&1 j Raising Variables 

This head is applied to local parameters that, besides matching its type, will have the effect of 
reshuffling appropriately the terms composing Si. Once V has been produced, it is substituted for 
every occurrence of F in the equation system and the pair V/F is added to the current substitution. 
Flex-rigid equations with a parameter as their rigid head are treated similarly except that imitation 
cannot be applied since parameters are bound within the scope of logical variables. 

Given an equation ( = (r;Ah F ■ Si = c ■ S2 '■ a), the construction of the instantiating term V in 
the case of imitation is described in the upper part of Figure 9. The judgment 

r';A' h c ■ S2 I A' f S[ M- V 

builds the constructors layer of V on the basis of the type A of F (that is also the source type of 
Si). Here, c-S2 is the right-hand side of £, A' and S[ are initially set to A and Si respectively, and 
then to subexpressions of theirs as the computation of V proceeds, and V and A' are initialized 
to the empty context. V, to be thought of as the "output value" of this judgment, corresponds to 
intermediate stages of the construction of V. Whenever this judgment is derivable, we have that 
r'; A' hs V : A' and T; A* hs S{ : A' > a are derivable. In the latter invariant, A* is some 
submultiset of the linear context A of £, and a is the type of this equation. 

As V is constructed, the local parameters bound by linear and intuitionistic A-abstraction (rules 
friJlam and friJlam) are stored in the accumulators V and A' respectively. When A' has the 
form A[ SzA'2 (rules fri_pairl and fri_pair2), V' must be a pair (V{, Vj) and S[ must start with a 
projection. The subterm V/ that is projected away can be arbitrary as long as it has type A't and 
uses up all local parameters in T'; A'; this is achieved by means of the variable raising judgment 
discussed below. 

When a base type is eventually reached (rule fri_con), the right-hand side c • S2 of the original 
equation is accessed, the constant c is installed as the head of V and its spine S is constructed by 
looking at the spine 52 and inserting the local parameters accumulated in T'; A'. The spine S is 
built by the judgment 

T"; A" h B' il S'2 -4 S' 

where B', S'2, T" and A" are initially set to the type B of c, the spine 52 and the accumulators T' 
and A' respectively, and then to subexpressions (subcontexts) as the computation of 5 proceeds. 
The "output value" 5' corresponds to intermediate stages of the construction of 5. The invariants 
for this judgment are T"; A" hs 5' : B' > a and T; A* hs S[ : B' > a, where again A* is a 
subcontext of A. 
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S is constructed by mimicking the structure of 5*2 in the sense that both will consist of the same 
sequence of spine constructors although possibly applied to different arguments. This invariant 
relates S' and S'2 as well and will be formalized as S' ~ S'2 in Section 3.4.2. Notice the use of the 
variable raising judgment (discussed below) in rules friJapp and friJapp to construct appropriate 
??-long arguments with new logical variables as heads applied to the parameters in F"; A". 

The construction of V in the case of projection, displayed in the lower part of Figure 9, is similar. 
Given an equation £ = (T; A h F ■ Si = h ■ S2 ■ a) with h a constant or a parameter, the 
instantiating term V for F is constructed by means of the judgment 

r';A' I- A'if* S[ M-V". 

Here, A' is initialized to the type Aot F, S[ to the spine S\ and both accumulators T' and A' to the 
empty context. The "output value" V represents intermediate stages of the calculation of V. The 
main invariants for this judgment are similar to the case of imitation. Observe that, differently from 
imitation, the right-hand side of £ is not taken into consideration in this judgment, and therefore 
in the construction of V. There can be a combinatorial explosion in the number of instantiating 
terms V that are generated in this way. The absence of guidance from the term h ■ S2 will cause 
most of them to be discarded. This is a major source of inefficiency and divergence in a Huet-like 

algorithm. 

The head of V relative to Si is set to a local parameter x from V or A' (rules frp Jvar and frp Jvar, 
respectively). The corresponding spine S is constructed by means of the judgment 

r";A" h A' I* a^S'. 

Here, A' is initialized to the type A of x, T" to T', and A" to A' (after withdrawing x : A from 
it, if x is linear). Here, a is the type of the original equation £,. As in previous cases, S' is the 
"output value" of this subprocedure and corresponds to intermediate stages of the construction of 
S. Whenever this judgment is derivable, there is always a derivation of T"; A" hs S' : A' > a. 

The main difference with respect to the analogous imitation judgment is that the spine S is built 
on the basis of the type A of the projected parameter (rules frpJvar and frp Jvar) rather than 
relative to the spine in the right-hand side of the equation. This leads to a form of non-determinism 
for product types not present in the case of imitation (rules frp_fst and frp_snd). 

The purpose of the variable raising judgment 

r';A' hA4V, 

displayed in Figure 10, is to produce an ?7-long term V of type A with new logical variables as its 
heads (rule raise_root) and the parameters accumulated in T'; A' in the corresponding spines. No- 
tice that functional types yield new local parameters (rules raise Jlam and raise Jlam). Whenever 
this judgment is derivable, there is a derivation of F'; A' bs V : A. 

The spines themselves are constructed by means of the judgment 

r';A' ha4S,i 

which, given T', A' and a, builds a spine S mapping heads of type A to roots of type a by non- 
deterministically rearranging the parameters present in T1; A'. We have T'; A' \~s a : S > A as 
an invariant for this judgment. 

Observe that, if T'; A' contains n assumptions altogether, this judgment has n\ derivations, which 
yield as many spines S and types A. The actual permutation that is picked is however unimportant 
since it only affects the type (^4) of the "new" logical variable F in rule raise_root. Therefore, 
the choices present in rules raise Japp and raise Japp (and choosing between them) is a form of 
"don't care" non-determinism. 
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Flex-Flex: Similarly to A~*, a system composed uniquely of flex-flex equations is always solvable in 
^-►-O&T indeed every logical variable F in it can be instantiated to a term Vp consisting of a 
layer of constructors as dictated by the type of F, but with every root set to Ga ■ ()?NIL (i:e. Ga "{) 
in A_>'_0&T), where Ga is a common new logical variable of type T-oo, for each base type a. Then, 
after normalization, every equation £ reduces to 1^; Af h Ga ■ ()?NIL = Ga ■ ()?NIL : a which is 
linearly valid, although extension ally solvable only if a ground substitution term for each needed 
Ga can indeed be constructed. When this situation is encountered, the procedure terminates with 
success, but without instantiating the logical variables appearing in it. The substitution constructed 
up to this point, called a pre-unifier, is returned. 

The possibility of achieving an algorithm a la Huet depends crucially on flex-flex equations being 
always solvable. If this property does not hold, as in some sublanguages of S~*'~0&'T we will discuss 
in this paper, these equations must be analyzed with techniques similar to [JP76] or [Mil91]. 

We will now discuss a number of simple examples in order to gain familiarity with this algorithm. We 
will focus our attention on the flex-rigid and rigid-rigid cases. 

Example 1: In the signature Si = (c:a) and pool $1 = (F:a —>• a), consider the following equation £1, 
written in the syntax of \-^-°&T for simplicity: 

• ; • h F c = c : a. 

(this equation corresponds to   •; • h F ■ (c ■ NIL);NIL = c • NIL : a  in 5~*'_0&T.) 

£1 has the two following solutions, again expressed in the syntax of A_>'_0&T (and of 5~>--0&T Jn 

parentheses); we use bracketed indices to distinguish these solutions: 

F& <— Xx'-.a.c (F(J) <— Xx'-.a.c-mh) 
FW «— Xx': a. x' (F^ <— Xx': a. x' ■ NIL) 

The first is obtained by imitation as witnessed by the presence of the constant c as the head of the 
instantiating term for F. The second is the result of projection, indicated by bound variable x'. 

Example 2: In a signature S2 identical to Si, but with the pool $2 = (F: a —o a), consider the equation 

•; • r- F"c = c : a 

that differs from £1 only by F standing for a linear rather than an intuitionistic function. This 
equation has a single solution obtained by projection: 

F<— Xx' :a.x' (F^Xx':a 

Indeed the instantiating term 

Xx':a. c (Xx':a.c-mL 

corresponding to the solution obtained by imitation in the previous example, is not linearly valid 
since the parameter x' is never used. The impossibility to apply rule fri_nil prevents our pre- 
unification algorithm from producing this term as a solution: this rule expects an empty linear 
local parameters accumulator while in this case it contains x':a. 

Example 3: Next, we analyze in depth one of the equations considered in Section 3.2: 

x :a,y:a;- h F~x~y — c"(G\ x y)~(G2 x y) : a. 

The signature of this equation, £3, is S3 = (c: a —o a —o a) and the variable pool at hand is $3 = (F: 
a —o a —o a, G\: a —► a —> a, G2 '■ a —> a —>■ a). The application of our algorithm yields the following 
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four instantiating terms for F, all obtained by imitation, and, after weak head-normalization, the 
equations to their right, where T stands for the intuitionistic context (x:a,y:a). 

i?(2) 

i?(3) 

Ax': a. Ay': a. c~(Fx V V) ^2 

Ax':a.Ay':a.c~{FSx')~{F2~y') 

Ax':a.Ay':a. c~(Fi 'y') ~(F2 *i') 

Ai':fl.Aj/:a.cTr(F2VV) 

S3 ■ 
t(2). 
S3    • 
c(3). 
S3 ■ 
f(4). 
S3    • 

• h c^Fi^*!/)^ = c'(Gi a; yY(G2xy) : a 
• h c~(IV2;)~(-fV?/) = c~(Gi xy)~(G2xy) : a 

■ I" c^(Fri/)^2*a:) = c'(Gia:i/)-(G2a:y):a 

• h c~JV(iVar?/) = cA(d a; y) ~{G2 a; y) : a 

The logical variables Fi and F2 appearing in the instantiating terms for F are produced by the 

variable raising judgment in rule friJapp. They contribute to the variable pool $3 of equations 

£3 with types (Fi:a —oa —oa, F2 :a), (Fi:a —oa, F2 :a —oa), (Fi:a —o a, F2:a —oa) and (Fi :a,F2: 
a—oa—oa), respectively. 

Each of the £3 is a rigid-rigid equation with the constant c as its head. It is therefore processed 
by rule pu_rr_con. Two uses of rule puJapp followed by rule pu_nil produce the following four 
sets of flex-flex residual equations: 

n(i) 
^3 
c(2) 
"3 
c(3) 
^3 
= (4) 
"3 

(r 
(r 
(r 
(r 

• h Fi ~x ~y = G\ x y : a, T; ■ h F2 = G2 x y : a) 

■ V- Fi "x = Gi x y : a,      T; ■ h F2"y = G2 x y : a) 

■ h Fi "y = G\ x y : a,      T; • h F2~x = G2 x y : a) 

■ h F\ — G\ x y : a, T;- h F2^x"y = G2 x y : a) 

Each of these situations triggers the application of rule pu_ff and the pre-unification procedure 
terminates returning the above instantiating terms for F, and the residual flex-flex equation systems 
S(') as constraints. At this point, our algorithm stops. 

Notice that, in this specific case (we are dealing with pattern equations, see Section 4.2), the 
residual equation systems could be further simplified, obtaining the following solutions for Gi and 
G2, which, together with the corresponding instantiation for F, constitute four solutions for the 
original equation £3. 

G 

(i) 

G\ 

(2) 
1 
(3) 

G\ (4) 

Ax': a. Ay': a. F\ "x' ~y' 

Ax' :a. Ay' :a. F\"x' 

Ax' :a. Ay':a. F\"y' 

Ax': a. Ay': a. i*\ 

G? 

G<8> 

G 
(4) 

Ax' :a. Ay': a. F2 

Ax': a. Ay': a. F2"y' 

Ax' :a. Ay' :a. F2'x' 

Ax':a. Ay':a. F2"x'~y' 

The variables Fi and F2 can be instantiated with any term of the appropriate type, assuming that 
such terms can be constructed. Observe that this cannot be achieved with the constant c alone. 

Example 4: As our next example, we consider the equation £4, written in the syntax of 5-+-°&T in 

parentheses: 

■;x:a h FST (F'x) = fx : a (■;x:a h F ■ X',TT\ NIL = / • X^NIL : a) 

where F has type a —o (a & a) in the pool $4 and the current signature is £4 = (/: a —o a). We have 
one solution obtained by imitation 

\x':a.{r{FYx'),F2~x') (F <— Ax':a. (f ■ (Fi • (x';NIL)) ;NIL, F2 • re'-;NIL)) 

The logical variables F\ and F2, both of type a —o a, have again been introduced by the raising pro- 
cedure. The origin of the first is in rule friJapp, while the second is a by-product of the application 
of rule fri_pairl. Since x' is a linear parameter, it must occur linearly in both subexpressions of 
the additive pairing construct. The fact that x' is an argument to F\ and F2 ensures that it will 
be used linearly by any instantiating term for these variables. 

Substituting the above term for F and performing weak head-normalization yields the following 
rigid-rigid equation £4 

■;x:a \- f~(F\ ~x) = f~x : a 
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which, after applying rules pu_rr_con, puJapp and pu_nil, reduces to an equation similar to the 
one analyzed in our second example above. The overall substitution is 

Fxi—Xx':a.x',    Fi—Xx':a. (/ V,F2 V) 

and no flex-flex equation is produced. 

Example 5: The next example is intended to demonstrate how complex a situation can be when logical 
variables have functional parameters. The signature £5 of this simple instance is (c:a,f:a —» a). 
We have also the variable pool $5 = (F: (a —> a) —o a). The equation £5 is the following: 

•;• h F~{Xy:a.fy) = fc : a 

The use of imitation produces the following substitution for F and equation £5, where we have 
made an implicit use of rule pu_redexJ followed by pu_rr_con, puJapp and pu_nil: 

F^ <—Xx:a->a.f{F1~{\z:a.xz)) &. •;• r- F^(Xy.a.fy) = c : a 

where F\ has type (a —>■ a)—oa. Imitation cannot be applied to £5 because c does not accept 
arguments while the linear argument of F\ must be consumed somehow. Projection yields the 
following substitution-equation pair (after simplification): 

Fi <—Xx:a -» a.x"F[ ■;■ h f"F[ = c : a 

where the type of F{ is a. The equation on the right-hand side is clearly non solvable and indeed 
no rule can be applied to further reduce it. We must backtrack to our original equation £5. 

We are therefore left to attempting projection, which yields the following instantiating term for F, 
that, after substitution and weak head-normalization, gives rise to the equation £'5 on the right-hand 
side. 

i^(2)<— Xx:a^a.x'F2 £,': •; • h f~F2 = f"c:a 

Again, F2 derives from variable raising in rule fri Japp. £5 is a rigid-rigid equation: the application 
of rules pujrr_con, puJapp and pu_nil reduces it to the flex-rigid (first-order) equation 

•; • h F2 = c:a 

with the obvious solution 
F2<r— C 

obtained by imitation. The solution returned by our pre-unification algorithm is therefore, after 
composing these two substitutions, 

F2 {—c,     F <—Xx.a —> a. x'c. 

Notice that F2 is not mentioned anywhere and could therefore be dropped. No residual flex-flex 
equation is produced. 

Example 6: As our final example, consider the flex-flex equation £0: 

x:a,y:a;- h F\*x = F2"y : a 

in some signature T,e and with respect to variable pool $6 = (Fi : a —o a, F2 : a —o a). Our pre- 
unification algorithm returns this equation untouched as a constraint by means of rule pu_ff. 

Since it is a flex-flex equation, £,e has the solution 

Fii—Xx'-.a.G'Q,     F2*—Xx':a.G~{) 

where G is a new logical variable of type T-00. The relevance of this substitution as a solution for 
^6 depends on the specific applications: it is an open solution in the sense that it mentions logical 
variables (G in this case). The existence of ground or closed solutions that do not mention any 
logical variables depends on whether £6 is equipped with constants permitting the construction of 
at least one (ground) term of the appropriate type, T-oa in our case. 

33 



3.4    Soundness and Completeness 

The procedure we just described is not guaranteed to terminate for generic equation systems since flex- 
rigid steps can produce arbitrarily complex new equations. However, it is sound in the sense that if a 
unifier or pre-unifier is returned the system is solvable (where free variables are allowed in the second 
case). It is also non-deterministically complete, i.e., every solution to the original system is an instance 
of a unifier or pre-unifier which can be found with our procedure. 

We dedicate this section to proving these properties. The relatively straightforward proof of soundness 
can be found in Section 3.4.1. Proving completeness is much more involved since it requires gaining a 
deep understanding of the auxiliary judgments defined in Figures 9-10. We first give some definitions 
that will be needed for this proof in Section 3.4.2, and then prove the completeness theorem itself and a 
number of auxiliary lemmas in Section 3.4.3. 

3.4.1     Soundness 

Proving the soundness of our linear pre-unification algorithm is particularly simple since we do not need 
to deal with the intricacies of instantiating-term formation. The proof that it returns a solution when 
the original system is indeed solvable proceeds by a simple induction. 

Theorem 3.2 (Soundness of linear pre-unification) 

If X :: S\Hgp,0 and there is a substitution Qff such that the multiset of equality judgments [Qff]E.ff 

has a derivation £, then   [Qff o 0]S   is derivable. 

Proof. 

We proceed by induction on the structure of X. The last rule applied in X can belong to one of the 
following four categories. 

Simplification rules: We group under this category any rule that does not involve directly logical 
variables. More specifically, we have all the inference rules in the 'term traversal', 'spine traversal' 
and 'rigid-rigid' segments of Figure 8. These cases are handled trivially since there is a perfect 
match between these rules and corresponding equality rules. 

As an example, we will carry out the case concerning rule pu_rr Jvar. 

Let  £ = (T; A, x: A h x ■ Si = x ■ S2 : a)  and £' = (r; A h 5i = S2 : A > a). Then, we have that: 

X' 

X =  pu_rr_lvar 

where   E = H',£   and there is a substitution 0^ such that   £ :: [Qff]Eff. 

By induction hypothesis, the multiset of equality judgments   [0^ o Q](H',£')   has a derivation £'. 
Let Eli be a derivation of [0^ o ©]£', i.e. 

S\, :: T; A h [Qff o ©]5i = [Qff o ©]52 : A > a 

by definition of substitution application. Then, by rule Seq Jvar, there is a derivation £l of 

T;A,x:A h  [Qff o Q](x ■ Si) = [Qff o Q](x ■ S2) :a 

i.e. of  [©J^F o ©]£, that together with the remaining elements of £' constitutes the desired multiset 
of derivations for   [0^ o 0](S', £). 

Rigid-flex rule: We use this label to indicate rule pu_rf. We prove this case by relying on the fact that 
the equality judgment admits symmetry (Lemma 2.19). 
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Let Abe a constant or a parameter,   (=(F;AI-  h ■ S\ = F ■ S2 ■ a)   and  ('=(F;AI- F ■ £2 = 
h ■ Si : a). Then, we have that: 

X' 

X =  pu-rf 
z',t\Eff,e 

where   S = £',£. 

By induction hypothesis, there is an equality derivation £' of   [Qg o 0](E/,£'), which contains a 
derivation SL of [0^ o ©]£'. Since by Lemma 2.19 equality is symmetric, there is a derivation £'^ of 

r; A h [Qff o 0](A • Si) = [Off o &\{F -S2):a 

and this concludes this part of the proof. 

Flex-rigid rules: We consider here the flex-rigid family of rules from Figure 8. We will exemplify the 
treatment of this class by considering rule pu_frJmit. 

Let  (=(r;Ah F • Si = c • S2 : a). Then, 

X' 

[V/F](E',t)\Eff,Q' 
■ pu_fr_imit 

Z',Z\Eff,(&oV/F) 

where  S = 3',£  and  Q = Q'oV/F. 

By induction hypothesis, there is an equality derivation £' of [0^ o Q']([V/F]E). By definition 
of substitution composition, this expression rewrites to [(0^ o 0') o V/F]E. Since substitution 
composition is associative, this is equivalent to [0^ o (0' o V/F)]E, and this concludes this case of 
the proof. 

Success rule: The one remaining possibility as the last inference of X is rule pu_ff. We have therefore 
the following derivation X: 

X = pu_ff 

with  H = Eg   and  0 = •. 

By assumption, we know that £ :: [@ff]Eff. Then, by a well-known property of substitutions, we 
have also that £ :: [0^ o -]Eff, which is what we had to prove. EZf 

It is not difficult to generalize this procedure to full unification (as, for example, in [SG89]), although 
we fail to see its practical value. 

3.4.2     Preliminary Definitions for the Completeness Theorem 

In this section, we have grouped several definitions and minor properties we will rely on in the proof 
of the completeness theorem. We need approximate forms of typing and equality for spines, and the 
definitions of the orderings we will base the inductive proof of the theorem on. 

Approximation of Spine Typing 

We observed earlier that the derivability of a spine equality judgment T; A hs Si = S2 : A > a does 
not imply in general that the typing judgments T;A hs 5,- : A > a have derivations, for i = 1,2. 
However, for this judgment to hold, the structure of the spines Si cannot be arbitrary. We denote the 
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minimal requirement expressed in the rules for equality in Figure 5 by means of the relation S + A, which 
we read spine S respects type A. It is defined as follows: 

NIL -=- a always 
jTi S -=- Ax k A2 if   S + A1 

TT2S±AI&A2 if   S + A2 

U':,S-rAl-oA2 if   S + A2 

U;S-±A1-*A2 if   S + A2 

It is easy to prove that if V; A hs Si = S2 : A > a is derivable, then S,-i-A holds, for i = 1, 2, according 
to the above definition. We will use this notion when dealing with equations as an approximation of 
typing, and when the spine at hand contains logical variables and is therefore not typable in the given 
signature. Similar definitions can be made for terms, but we will not need them. 

Approximation of Spine Equality 

In the auxiliary lemmas to the completeness theorem, we will often need to assume the existence of 
different stages of instantiation of the same spine. Relying on equality judgments for this purpose is 
feasible, but results in obscure statements. Instead, we capture the minimal compatibility requirements 
for two spines Si and 52 to have a common instance by means of the relation Si ~ S2, defined as follow: 

NIL ~ NIL always 
71"! Si ~TTIS2 if   Si ~ S2 

7T2Sl ~ n2S2 if   Si ~ S2 

Ui-Si' -u2-s2 if   Si ~ S2 

UüSi' -U2;S2 if   Si ~ S2 

It is easy to prove that whenever the judgment T; A \—£ Si = S2 : A > a is derivable, then Si ~ S2 

holds. Notice also that, if Si ~ S2, then there is a type A such that Si — A and S2 -=- A hold. The 
opposite entailment fails because of the presence of product types. 

Relative Heads 

Next, we wish to identify the head of a canonical term U with respect to a spine S, where both might 
contain logical variables. In the simply typed A-calculus A"*, an accompanying spine would be unnecessary 
since every term has exactly one head. In S~*"~°&T, the presence of pairs complicates this situation. We 
rely on a spine to locate the head we are interested in among the many the term at hand might contain. 
The head of U relative to S, written Hs{U), is defined as follows: 

Hmh{x ■ S) = X 

HmL(c ■ S) = c 
HmL(F-S) = F 

H,lS({UuU2)) = Hs(Ui) 
H*3s((Ui,U2)) = HS(U2) 

Hvls{^x:A.U) = Hs(U) 
Hv.s{Xx:A.U) = HS(U) 

Notice that this function is partial:   it is undefined in the situations not listed in this definition.   In 
particular, our assumption that U is in canonical form is essential since we did not provide a case for 
redices.   However, it is easy to prove that whenever U has some type A and there is a derivation of 
T; A r-£ S : Aa for some contexts T, A and base type a, then Hs{U) is defined. 

In the following, we will rely on a simple property of this notion: 

Lemma 3.3  (Relative heads) 

i. If Hs(U) — c, then   Can([/ • S) = c • S'   for some spine S'; 
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n. If HS{U) = F, then  Can(U ■ S) = F ■ S'  for some spine S'. 

Proof. 
By induction on the structure of U and 5. An auxiliary induction on the reduction sequence is needed 

to cope with functional object. Ef 

A similar property does not hold for parameters since /?-reduction can change a bound parameter in U 
to an arbitrary term. 

Instantiating-Term Ordering 

We conclude this section with the definition of the two ordering relations we will use to carry on the 
inductive argument in the proof of the completeness theorem. The first of these orderings, denoted 
Us C. Vs, where Us and Vs are multisets of terms, specifies Us differs from Vs only by the fact that some 
terms in Us are subterms of a term V in Vs, abstracting from the presence of constructors. 

An example will help gain some intuition about this notion. We want for instance that 

{\x:a. Xy.a. x, Xx:a. Xy.a. y)  C   Xx:a. Xy.a.cx y 

since both x and y are subterms of c x y. It will be useful to express this example according to the syntax 
of5^-o&T. 

(Xx:a. Xy.a. x ■ NIL, Xx :a. Xy.a. y ■ NIL)   C  Xx:a. Xy.a. c- (x ■ NIL); (y ■ NIL); NIL. 

In the proof of the completeness theorem, Us and VJs will be the images of two substitutions. The former 
will have to be shown smaller than the latter in order to apply the induction hypothesis. 

We define the C relation in stages on different entities, but take the liberty to overload this symbol 
as well as the auxiliary C. The distinction should be clear from the context. We have the following 
definition: 

U =raise V: We write U =raise V to denote the fact that two terms U and V differ only by the presence 
of leading abstractions in U. V will always be a root. This relation is formally defined as follows. 

U  -—raise U 

Xx'.A.U —raise  V      if     U =raise  V 

Xx'.A.U —raise  V      if     U =raise  V 

In the example above, we have that 

Xx : a. Xy.a. x-NIL =raise x-NIL and Xx.a. Xy.a. y ■ NIL =raise V • NIL, 
i.e. Xx:a. Xy.a.x =raise x and Xx:a. Xy:a.y—raise y. 

Us C V: We recursively extend the above relation so that its right-hand side operates on terms of 
arbitrary type, and not just on roots, and its left-hand side is a multiset of terms. 

• C () always 
UQH-S if   U=ratseH-S 

Us C (Vi, V2) if   Us = (Us!, Us2), Usx C Vi and Us2 C V2 

UsQXx:A.V if   UsQV 
UsHXx-.A.V if   UsQV 

In the previous example, the first of these specifications allows us to conclude that 

Xx :a. Xy.a. x ■ NIL C x ■ NIL and Xx :a. Xy.a. y ■ NIL C. y ■ NIL. 
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Us C S: We extend the above relation so that it matches all the arguments of a spine with a given 
multiset of terms. 

• C. NIL always 
UsC-rrxS if   UsCS 
US\ZTT2S if   UsCS 
UsQV^S if   Us = {Us', Us"), US' C V and Us" C S 
Us\ZV;S if   Us = (Us', Us"), Us' C V and Us" C S 

With respect to our current example, we have that 

(\x:a.\y:a.x -NIL, Xx :a. Xy.a. y ■ NIL) C (a; -NIL); (y -NIL); NIL. 

Us n V: The following definition extends the last relation to roots and inductively to arbitrary terms. 
Note that while the previous specifications could relate a term to itself, this is not possible here: C 
is strict. 

UsCH-S    if   UsQS 
UsC(Vu V2)    if   Us = (Us!, Us2), USl c Vx and Us2 CV2, or 

Us1 C Vi and Us2 C V2 

UsCXx:A.V    if   UsnV 
UsCXx:A.V    if   UsCV 

In relation with our example, we have 

(\x :a. Ay.a. x ■ NIL, \x :a. Xy.a.y ■ NIL) C Xx:a. Xy.a. c ■ (x ■ NIL); (y ■ NIL); NIL. 

Us fZ Vis: Finally, we extend this relation so that the right-hand side is a multiset of terms. 

Us', Us" CV, Us"    if   Us'cV 

This definition allows us to complete the example presented at the beginning of the discussion. It 
is trivially obtained from our last relation by taking Us" to be the empty multiset. 

The ordering we will rely on in the proof of the completeness theorem is Us C Vs. In order to do so, 
we must show that it is not possible to construct an infinite descending C-chain at any multiset Us. 

Lemma 3.4 (Well-foundedness of E.) 

Us C Vs is a well-founded ordering. 

Proof. 

After proper generalization to take into account the several involved relations, this very simple proof 
proceeds by induction over the above definition. Ef 

Derivation Ordering 

The second ordering relation we need is among multisets of equality derivations obtained by applying a 
substitution to an equation system. Given systems E,-, substitutions 0; and multiset derivations £,• of 
[6J]SJ-, for i — 1,2, we indicate this relation as (Ei,©i,£i) -<! (£2, 02, £2)- It is a variant of the usual 
multiset ordering constructed over the notion of subderivation. 

We have the following formal derivation: (Ei,0i,£i) -< (E2,Q2,S2)  holds if and only if E\ :: [0i]£i, 

£2 '■'■ [02JE2, and any one of the following cases applies: 

• £\ is a submultiset of £2. 
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• £x = £[,£{', where  £[ :: [©i]Hi,  £[' :: [OijH'/  and  Si = Z[,Z'{, 
£> = £2,4,where   £2 :: [02]£2,   ^':: [02]3^'   and   H2 = £2,H'2', 
each S'i in £[ is a subderivation of £2, and 
(H'/,0i,4)-<(H'2',02,4). 

• fi =£i,£[, where £1 :: [0i]6, 6 = (r; A I- h ■ S = F ■ S' : a), £[ :: [0:]Hi and. Si =6.Si, 
£2 = £2,£2, where £2 :: [62]6, & = {T;A \- F ■ S1 = h ■ S : a), £2 :: [02]H'2 and S2 = 6, H2, 
h is a rigid head, 
(Hi,0i,,?lH(H'2,02,4). 

• £x =£i,£{, where £x :: [0i]6, 6 = (r;A h U_S_= H ■ S' : a), £[ :: [6^ and^ = 6,Hi, 
£ = £2,4 where £2 :: [02]6, 6 = {t; A h f/ • 5 = i7 • 5' : a), £2 :: [62]S'2 and H2 = 6, S'2, 
(Si,01),f{)^(S'2,02!<f2). 

• £= f i,3, where ^ :: [6i]6, 6 = (f; A h ff • 5'= CAv5 : a), 3 :: [6i]Si and S1=6,Hi, 
£2 = £2,4 where ^2 :: [02J6, 6 = (r; A h H ■ S' = U ■ S : a), £2 :: [02]H'2 and H2 = 6, H'2, 
(Hi,01;3)-<(S'2,02,4. 

The first two points of this definition correspond to the usual concept of multiset ordering, relative to the 
notion of subderivation. The third point specifies, roughly, that a fiex-rigid equation is to be considered 
smaller than the symmetric rigid-flex equation. We interpret the last two points as indicating that weak 
head-reducing one of the sides of an equation yields a smaller equation. 

This ordering is well-founded and therefore it is possible to base an inductive proof on it. 

Lemma 3.5 (Well-foundedness o/-<) 

-< is a well-founded ordering. 

Proof. 
This simple proof proceeds by induction on the above definition. Bf 

3.4.3     Non-Deterministic Completeness 

On the basis of the definitions given in the previous section, we will now state and prove that our pre- 
unification algorithm is non-deterministically complete with respect to the notion of equality discussed 
in Section 2.4. This task is not easy since we need to formulate proper lemmas for each of the judgments 
that are involved in the construction of an instantiating term for a logical variable. There are six such 
judgments and therefore we will need six auxiliary lemmas, each stated in a far more general form than 
necessary at the point where they are used. 

Prior to doing so, we will need the following technical result according to which all logical variables 
appearing in an instantiating term U for a logical variable F are "new", i.e. different from every variable 
appearing in the equation system H at hand or in the substitution constructed so far. For the sake of 
conciseness, our formalization does not keep an accurate account of the logical variables in use; it is 
straightforward to augment it with this information, but then tedious to carry around. Therefore, we 
will rely on the informal notion of "new" variable we just introduced. 

Assumption 3.6  (Freshness of substitution terms) 

i. If T; A h a '—t S, A, then every logical variable in S is "new"; 

ii. If T; A h A «->■ V, then every logical variable in V is "new"; 

Hi. If  T;A h  B # S' '-^ S   or   T; A h  A ^ a c->- 5, then every logical variable occurring in S is 
"new"; 
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iv. If T; A I- U IA ff' S c-¥ V   or  T; A h A ff1 S ^-> V, then every logical variable occurring in V is 
"new". □ 

The validity of this fact is easily ascertained by inspection of the rules in Figures 9 and 10. 

We start with the following lemma that characterizes the behavior of the spine variable raising judg- 
ment T;A I- a <-» S,A defined in Figure 10. In its general form, it states that every well-typed term 
can be obtained from a redex whose spine part can be produced by means of that judgment and whose 
head is in the =raise relation with the original term. 

Lemma 3.7 (Spines in variable raising) 

If T;A t~£ U : a with U canonical, then, for all contexts Tj, r2, Ai and A2 such that (ri,r2); 
(Ai, A2) = T; A, there exist a type A, a canonical term V and a canonical spine S such that 

• ri;Ai hs V :A, 

• r2;A2 l-£ 5": A> a, 

• r2;A2 hö4S,A 
• Can(V -S) = U, 

• *    —-raise U • 

Proof. 
Given a partition (ri, T2); (Ai, A2) of the context T; A, we proceed by induction on the structure of 

T2; A2. There are three cases to consider: 

T2 = • and A2 = •: 

We have therefore that Ty, Ai = T; A. Now, simply set A = a, V = U and S = NIL. Then, 

• T; A hs U : a  by assumption, 

• •; • l~s NIL ■ a > a   by rule lS_nil, 

• ■; ■ h a <—> NIL, a  by rule raise_nil, 

• Can([/ ■ NIL) = U  by rule Sr_nil (notice that U must be a root), and 

• U =raise U by definition of _ =ralSe - 

This concludes this case of the proof. 

A2 = A'2,x:B, T2 arbitrary: 

By induction hypothesis, there are a type A', a canonical term V and a canonical spine S' such 
that 

• U::Ti;Aux:B hs V : A', 
• 5::r2;A'2 hs S' : A'> a, 

• 7e::r2;A'2 h a^S',A', 

• Caxi(V -S') = U, and 

• ^      —-raise  U • 

We obtain the desired result by taking A = B-oA', V = \x:B. V' and S = x^^S'. Clearly, V is 
canonical, and so is S since both x^ and 5" are. Moreover, 

• Ti;Ai l-s Xx:B.V :B~oA'  by rule ISJlam on U, 

• F2; A2, x : B r~£ (x^ ", S') : B —o A' > a by rule IS Japp on S and a derivation of the judgment 

T2-x:B hs af : B, 

which exists by virtue of Corollary 2.26 and weakening (Lemma 2.1). 
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• T2;A'2,x:B h a <-» x^ ]S1, B -o A'  by rule raise Japp, 

• Can((Aa;: B. V) ■ {x*;S')) = Can([af /x]V ■ S') = Can(K' • S") = U  where the second step 
makes use of Corollary 2.28, and 

• Xx-.B.V =raise U since V -raise U. 

T2 = r'2,x:B, A2 arbitrary: 
We proceed as in the previous case. Bf 

In the sequel, we will always use the special instance of the previous lemma obtained by choosing Ti 
and Ai to be the empty context, as expressed by the following corollary. 

Corollary 3.8 (Spines in variable raising) 

If F;A hj U : a with U canonical, then there exist a type A, a canonical term V and a canonical 
spine S such that 

• •;• Hs V:A, 

• T;A hs S: A> a, 

• T;A h a^S,A, 

• Can(V -S) = U, 

• v   = raise U ■ 

Proof. 
A proof of this corollary is obtained from the previous lemma by choosing ri = Ai = •, T2 = T and 

A2 = A. Bf 

This corollary is used only in the following lemma that highlights aspects of the behavior of the 
variable raising judgment T; A h A '-¥ V, defined in Figure 10. In particular, the substitution 0 it 
postulates is only defined on the ("new") variables in the term V. 

Lemma 3.9 (Variable raising) 

If T; A hs U : A with U canonical, then there is a canonical term V and a canonical substitution 0 
such that 

• T;A\- A^V, 
• T;A hs [e]V = U:A, 

• lm(0) C U. 

Proof. 
The proof proceeds by induction on the structure of A. We will analyze the most significant cases. 

Recall that we requires the domain of a substitution to be disjoint from its range. 

A = a: By the previous corollary, there exist a type B, a canonical term U' and a canonical spine S 
such that 

• T; A hE S : B > a, 

• r;Aho4S,5, 
• Can(C/' -S) = U, 

• ty    —raise U • 

Let 0 = U'/F and V = F ■ S. Both 0 and V are clearly canonical. Then, 
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» T;A h dH^   by rule raise_root. 

• T; A (-£  [0]V = U : a   by the completeness of staged equality (Theorem 2.18) since [Q]V = 
[U'/F](F -S) = U'-S and Can{U' -S) = U. 

• lm(0) C U by definition of C   since lm(0) = U' and U' =raise U. 

A = T: By inversion on the typing rules, we have that U = {). Set 0 = • and V — (). Indeed, 

• r;AI- T4()   by rule raise_unit. 

• T; A hs () = () : a  by rules Seq_unit. 

• • C () by definition of  C. 

A — A\ & A-2,: Then, by inversion on rule lS_pair, U = {U\, U2) and, for i = 1, 2, T; A hs [/; : Ai is 
derivable and U, is canonical. By induction hypothesis, there are canonical terms V, and canonical 
substitutions 0; such that 

• T;A h Ai^Vi, 

• T;A hs [e{]Vi = Ui :A{,  and 

• Im(0;)Ct/;. 

By Assumption 3.6, we have that V,, and therefore 0,-, mention distinct logical variables. Thus, we 
can form the substitution (0j, ©2) without violating the requirement that the domain and the range 
of a substitution be disjoint. Moreover, [©i,©2]V; = [0;]V; and Im(0i,02) = (Im(0i),Im(02)). 
Then the term (Vj, V2) and the substitution ©i,02 are canonical, and moreover 

• T; A h Ai &A2 <-> (Vi, V2)   by rule raise_pair. 

• T;A t-s [0i,02]{Ki,^2) = (C/i,;72) :A1kA2, since [©j, e2](^i, V2) = ([0i, ©2]^i, [©i, ©2]^) 
([0l]^l,[02]^2}. 

• lm(0i,02) = (Im(01),Im(02)) C (Ui,U2) by definition. 

A = Ai —o A2: Then, by inversion, U = \x : A\.U' for C/7 canonical, and F; A, a;: Ai hs £/' : A2 is 
derivable. By induction hypothesis, there is a canonical term V' and a canonical substitution 0 
such that 

• T;A,x:Ai h i42«^ V, 

• r;A,a;:^i hs  [0]K' = [/' : A2,   and 

• lm(0) C U'. 

Then \x:A\.V' is canonical and 
• T; A I- Ai -o .42 ^-> Arc: ^4i. V   by rule raise Jlam. 

• T; A hs  [&\(\x:Ai. V) = \x : Ai.U' : Ai -o A2   by rule SeqJlam and definition of substi- 
tution application. 

• lm(0) nXx-.Ai.U'   by definition. 

A = Ax —»■ A2: The proof proceeds similarly to the previous case. Bf 

We will now consider the judgments having the function of building the terms and spines of an 
instantiating term obtained by projection and imitation. These four judgments were defined in Figure 9 
and rely on the variable raising judgments. The corresponding lemmas will use the result we just obtained. 

We begin with a characterization of the judgment T; A h A ^ a <^->- S0 that builds the spine S0 of 
an instantiating term obtained by projection. 

Lemma 3.10 (Spines in projection) 

If S :: T;A hs S : A > a for S canonical, then there is a canonical spine S0 and a canonical 
substitution 0 such that 

• T;A h A^ a^S0, 
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• T;A hE [e]S0 = S:A>a, 

• lm(0) E S. 

Proof. 

This proof proceeds by induction over the structure of the type A, or, equivalently, of the derivation 
<S. We have the following cases depending on the last rule applied in iS: 

lS_nil: Then, by inversion, 
S = IS Jiil 

T; • hs NIL : a > a 

with A = a,  5 = NIL  and  A = •. 

Then, take S0 = NIL and 6 = •, which are trivially canonical. Thus 

• T; ■ h a 45 a M- NIL   by rule frpjiil. 

• T; ■ \~s [6]NIL = NIL : a > a  by rule Seq_nil. 

• • C. NIL   by definition of C. 

lS_fst: We have that 
S' 

V; A hs S' : Ax > a 
S = lS_fst 

T;A hs 7Ti5' :Ai&A2 >a 

with A = A\kA2   and  5 = 7Ti 5' for 5' canonical. 

By induction hypothesis on S', there is a canonical spine S'0 and a canonical substitution 0 such 
that T;A \- Ä! I* a^-> S'0 and T; A hs [0]S£ = S' : Ax > a are derivable, and lm(0) C 5'. 
Then, 

• T; A h Ai & A2 f a ^-> 7T! 5^   by rule frp_fst. 

• T; A hs [0](TTI 5*O) = it\ S' : Ai k A? > a   by rule SeqJst and the definition of substitution 
application. 

• lm(0) C 7Ti 5'   by definition. 

Observe that iri S'0 is canonical since S'0 is. 

lS_snd: We reason symmetrically. 

IS Japp: By inversion, we have that 

U S1 

T; A' hs U : Ai    T; A" hs 5' : A2 > a 
S = IS Japp 

r;A',A" hs U\S' :A1^>A2 >a 

where   A — A\ -o A2,  S = U',S'   and   A = A', A". Both U and S' are canonical. 

By the variable raising lemma 3.9 applied to U, there are a canonical term V and a canonical 
substitution 0' such that  T; A' h Ai<-+V,   T; A' hE [0']V = tf : Ax   and  Im(©') C £/. 

By induction hypothesis on S', there are a canonical spine S'0 and a canonical substitution 0" such 
that T; A" h A2 ^ a ^ S'0  and T; A" hs [Q"]S'0 = S' : A2 > a are derivable, and lm(0") C S'0. 

By Assumption 3.6, we have that V and S'0 (or equivalently 0' and 0") mention distinct logi- 
cal variables. Therefore, the domain and the range of the substitution (0',0") are disjoint and, 
moreover,   {[&}V-[e"]S'0) = [&, &'](V', S'0) and Im(0',O") = (Im(0'),Im(0")). Then, 

• T; A', A" h Ai -o A2 f a «^ V; S'0  by rule frp Japp. 

• T; A', A" hs [0']K;[0"]5^ = V\S' :Al-oA2>a  by rule SeqJapp. 

• lm(0',0") = (Im(0'),Im(0")) C[/;5'   by definition. 
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Moreover, V;S'0 and (6',0") are canonical. 

IS Japp: This part of the proof is similar to the previous case. Ef 

On the basis of this result, we have the following lemma which describes how an instantiating term 
V for a logical variable F is obtained. Observe that this property postulates the validity of an instance 
of the strict relation C, while the previous lemma made use of the non-strict form C. 

Lemma 3.11  (Projection) 

If U ::T;A \-£ U : A for U canonical,   S -f- A   and  Hs(U) = x, then there exist a canonical term 
V and a canonical substitution O such that 

• T; A h A V S <-> V, 

• T;A hE [Q}V=U:A, 

• lm(0) C U. 

Proof. 

The proof proceeds by induction on the type A and inversion on the structure of S. 

S = NIL: Then, by definition of -=-, we have that A = a. 

By inversion onZY, we obtain that U = H -S'. Since U is in canonical form and Hs(U) = x, we have 
that H — x. The parameter x can be either linear or intuitionistic: this gives rise to two subcases. 

x:B in A: By inversion on rule lSJvar, there is a derivation of T; A' hs S' : B > a, where 
A = A',x : B. By the previous lemma, there are a canonical spine S0 and a canonical 
substitution G such that T; A' h B f a M- S0, T;A' hs [0]5O = S' : B > a and 
Im(O) C 5'. 

Then, for V = x ■ S0, which is certainly a canonical term, we can therefore conclude that 

• r;A',x:Bh- a •ft-*' NIL M- x ■ S0   by rule frpJvar. 

• r; A', x: B hs [&\(x ■ S0) = x ■ S' : a by rule SeqJvar. 

• Im(O) C x ■ S', by definition. 

x:B in T: Similar. 

S = 7Ti 5': By definition of -=-, we have that   A = Ai & A2   and   5' -=- Ai. 

By inversion on rule lS_pair, we also have that U = (U\, U2) and Wj :: T; A hs J78- : At, for i = 1, 2. 
Clearly, since t/ is canonical, so are Ui and U^. Moreover, by definition of relative head, we have 
that. Hs(U) = HS'{Ui). 

Then, by induction hypothesis on A\, there are a canonical term V% and a canonical substitution 
6i such that   r; A h Ax $* S' M- VU   T; A hs  [Q^Vx = U1:A1   and  lm(0x) C UL 

By the variable raising lemma 3.9 applied to U2, there are a canonical term V2 and a canonical 
substitution 02 such that   T; A (- ^2 ^ V2,   T; A hs [02]V2 = i72 : A2   and  lm(02) C U2- 

By Assumption 3.6, we have that V\ and V2, and consequently 0! and 02, do not to have logical 
variables in common. Therefore, the substitution (Oi,©2) satisfies our disjoinctness requirement 
and, moreover, [©i,02]V; = [®i\Vi andlm(©i,02) = (Im(©i),Im(02)). A consequence of this fact 
is that (0i, 02) is canonical. (Vi, V2) is canonical as well, since both components are. Moreover, 

• T; A h Ai & A2 V 71-1 S' <-> (Vi, V2)   by rule frp_pairl. 

• T;A r-E [e1,e2}(V1,V2) = (UUU2) :AlkA2   by rule Seq_pair. 

• lm(0i,02) = (Im(01),Im(02)) E {UltU2)   since lm(0i) C Ut and lm(02) C U2. 

S = 7r2 S': We proceed symmetrically to the previous case. 
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S =U'- S': We have that  A = Ax -o A2   and  S'+ A2. 

By inversion on rule lSJlam, U = Xx : AX.U" and T;A,x : Ax hs U" : A2. Clearly, U" is 
canonical. 

By induction hypothesis on A2, there are a canonical term V and a canonical substitution 0 such 
that r;A,a?:i4i h A2 ft* 5' M- V, r;A,ar:>li hs [0]V = U" : A2 and lm(0) C tf". Then, 
As : Ai. V is canonical and 

• T;A h 41^A2f f/'TS'^Az^i.V"  by rule frpJlam. 

• r;Ahs [e](Aar:i4i.V') = Aa!:i4i.t/":i4i-oi42   by rule SeqJlam. 

• lm(0) C AK:^I.C/"  by definition. 

5 = U"'; S': We proceed as in the previous case. Ef 

Similar results hold for the imitation judgments and the same observations apply. The premisses 
of the lemmas below are slightly more complicated than in the case of projection since the imitation 
judgments mention more information. However, this does not add complexity to the proofs. 

Lemma 3.12 (Spines in imitation) 

If S :: T;A hs S : A > a for S canonical and S ~ S, then there is a canonical spine S0 and a 
canonical substitution 0 such that 

• T;A\- A¥ S^S0, 
• T;A hs [6]S0 = S:A>a, 

• lm(0) C S. 

Proof. 
We proceed by induction on the structure of A in very similar fashion to the way we handled the 

proof of the analogous result in the case of projection (Lemma 3.10). The major difference is manifested 
by the treatment of the conjunctive cases. We illustrate this point by carrying out the proof in the case 
S ends in rule lS_fst. 

lSJst: We have 
S' 

T;A hs S' :Ai >a 
S = lS_fst 

T;A hE TTIS" :A1kA2>a 

with  A = Ai & A2   and   S = wi S' for S' canonical. 

Since S ~ S, we have that S = TTI S' and 5" ~ 5'. We can therefore apply the induction hypothesis 
on Ai, We obtain that there are a canonical spine S'0 and a canonical substitution 0 such that 
r; A h Ai 4-1 S' <-> S'0   and   T; A hE [Q]S'0 = S1 : AY > a   are derivable, and lm(0) C S'0. Then, 

• T; A h Ai k A2 l
l m S' M- TTJ S'0  by rule frijfst. 

• T; A HE  [0](7TI S'0) = TTI S' : A\ & A2 > a   by rule Seq_fst and the definition of substitution 
application. 

• lm(0) C. 7Ti S'   by definition. 

Clearly, 7Ti S'0 is canonical. Ef 

The above result is used in the following lemma. It describes the properties of the judgment T; A h 
c ■ SI A^[l S47 which constructs an instantiating term V by imitation. Recall that, by the relative 
heads lemma3.3, Hs(U) = c entails that Can([/-S) = c-S* for some canonical spine S*, but the opposite 
implication does not hold.  Therefore we need both premisses in the property below in order to expose 
S*. 
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Lemma 3.13 (Imitation) 

If U ::T;A\-S U : A for U canonical, S + A, Hs{U) = c for c: Bin'S, Can(U ■ S) = c ■ S*, and 
S* ~ S, then there exist a canonical term V and a canonical substitution 0 such that 

• T;A h c-S/Aff S^V, 

• T;A hs [Q]V =U :A, 

• lm(0) C U. 

Proof. 
This proof is conducted similarly to the case of projection we analyzed in Lemma 3.11, i.e. by induction 

on the type A and inversion on the structure of S. The main difference appears in the base case, i.e. 
when S — NIL. We will analyze this case only. 

S = NIL: By definition of —, we have that A = a. 

By rule Srjiil Can((7 ■ NIL) = U = c ■ S* for c: B in £ and some spine S* (by inversion, U must 
be a root). By inversion on rule lS_con, 5* :: T;A hj S* : B > a is derivable. Moreover, S* is 
canonical. 

By the previous lemma applied to S*, there are a canonical spine S0 and a canonical substitution 
0 such that  T;Ah ail S^S0,  T;A hs [0]5„ = S* : B > a  and  lm(0) C S*. 

We obtain the desired conclusion by the following observations: 

• T; A h c • SI a ff NIL ^ c ■ S0   by rule fri_con. 

• T; A hE c • [Q]So = c-S* : A by rule.Seq_con, from which we get   T; A hs c • [0]5O = £/ : A 
by rule Seq_redex_r. 

• lm(0) \Z c ■ S* by definition. 

Moreover, c ■ S'0 is canonical. ET 

With the help of the various properties we just proved, we can tackle the proof of the non-deterministic 
completeness of our linear pre-unification algorithm with respect to the notion of staged equality defined 
in Figure 5, and therefore, by Theorem 2.18, with respect to definitional equality for S'_*'_0&T. This result 
is expressed in the following theorem. 

Theorem 3.14 (Completeness of linear pre-unification) 

Given a system of well-typed equations S and a well-typed canonical substitution 0 such that £ :: [0]S, 
there are substitutions Qg and O', and a system of flex-flex equations "Eg such that 

• 0 = Can(0^ o 0')| dom(s), 

• £ff '■■ [Qff]Eff> and 

. X::E\Eff,&. 

Proof. 
We prove this theorem by nested induction on the image of 0 considered relative to the well-founded 

ordering C and on the triple (2, 0, £) relative to the well-founded ordering -<; both orderings were defined 
in the previous section. Therefore, we allow ourselves to appeal to the induction hypothesis every time 
we are considering a situation characterized by a system of equations H', a substitution 0' and a multiset 
of derivations £' such that 

1. Im(0') C lm(0),   £' and £ are arbitrarily related and so are S' and S, or 

2. 0' = 0, but (=,',&,£') <(E,0,£). 

We distinguish the following (non-exclusive) cases based on the contents of S. 
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3~: 2 consists only of flex-flex equations. 

Simply take Qg = 0,   0' = •   and   Eg = 2. We obtain the desired result as follows: 

• 0 = Can(0 o -)| dom(e)  since 0 o • = 0, and 0| dom(©) = 0 and moreover 0 has been assumed 
canonical. 

• Use £ as Eg. 

• Eff\Effr  byrulepuJf. 

3', £ with £ = (r; A r- Si = 52 : A > a): E contains a spine equation. We further distin- 
guish cases on the structure of the type A. We analyze three representative situations. The 
remaining cases are handled similarly. Let £ be the assumed derivation of [0]£ and £' :: [0]H', so 
that £ = £',£. 

A = a': By inversion on rule Seq_nil, we have 

£ =  Seq_nil 
T; • hs NIL = NIL : a > a 

where   [0]5i = [6]52 = NIL,  a' = a  and  A = •. 

We can apply the induction hypothesis on 2' and 0 since £' is a submultiset of £ and therefore 
(2', 0, £') -< (2, 0, £). Thus, we deduce that there are substitutions ©^ and 0' and a system 
of flex-flex equations 2^ such that 

• 0 = Can(0J? o6')|dom(0), 

• % :: [%]% and 

•^'::3'\2if-e'. 
In order to conclude this case, simply apply rule pu_nil to X' to obtain the desired derivation 
Xol (E',t)\Eff,&. 

A = A\ & A-2'. By inversion, there are two subcases to consider: either £ ends in rule Seq_fst, 
or in rule Seq_snd. We will examine the first of these alternatives. The second is handled 
similarly. By definition of substitution application, we have 

£' 

r;Ahs  [&\S[ = [S]S2 : Ai > a 
£ —  Seq_fst 

T;A hs [e}(n1S'1) = [e}(iriS'2):A1kA2>a 

with  Si = TTi S[   and 52 = TTI S'2. Let ? = (T; A h S[ = S'2 : Ax > a). 

By definition, {(E', £'), e, {£', £')) -< (E,0,£).   By induction hypothesis on 0 and (2',£'), 
there are 0', 0^ and Eg such that 

• 0 = Can(0J? o0')|dom(e), 

• % :: [Qff]Eff and 

. X'::E',e\Eff,&. 
The derivation X is constructed by applying rule pu_fst to X'\ 

S',(r;Ah 5'1=52:yl1>a)\~ff,0j(f 
 pu_fst. 
2', (r; A h jri S[ = TTI S2 : AxkA2 > a)\Eff,Qff 

A = Ax —o A2: By inversion, we have that 

£' £" 

r; A' hs [0]C/i = [0]t/2 : Ax    V; A" hs [0]5J = [0]52 : A2 > a 
£ =  Seq Japp 

r;A',A" hE [e](U1-S'1) = [e}(n1U2S'2):Ai^>A2>a 
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with   A = A', A",   Si - Ui ;5i   and S2 = U2~,S'2. Let   £' = (r;A' h  Ux = £/2 : .Ai)   and 
£" = (r;A"h 5i = 5^:i4!>o). 

By definition, ((-',£',£"), 0, (£',£')) -< (5,0,£). By induction hypothesis, there are 0', 0^ 
and Eff such that 

• 0 = Can(0^ o 6')| dom(0), 

• % :: [%]% and 

. A"::S',e',r\%,0'. 
The required derivation X is then obtained by applying rule puJapp to X'. 

3. | with £ = (r; A \r U1 = U2 : A): S contains a term equation that is not flex-flex. Again, 
we proceed by cases on the structure of A. The situations in which A is not a base type are handled 
similarly to the case of spines above. We will not go into further details. More interesting are the 
cases where A is some base type a. 

By inversion, [/,■ = Hi ■ Si for i = 1,2. We will distinguish cases on the nature of the heads Hi and 
H2. We first consider the situations where either or both are terms, so that U\ or U2 is a redex. 
Once these cases are taken care of, Hi can be either a constant, a parameter or a logical variable. 
Then, we distinguish three cases depending on whether H\ and H2 are rigid or flexible heads (by 
assumption, H\ and H2 cannot be both flexible). 

Again, we will indicate with £ and £' the assumed derivations of [0]£ and [6]H', respectively. We 
have that £ = £',£. 

Redex-redex: Let H% = V\ and H2 = V2. By inversion on the structure of £, this derivation can 
end either in rule Seq_redexJ or Seq_redex_r. We will assume that the first of these rules 
is used. The other alternative is treated symmetrically. Therefore, 

£' 

r;Ahs [Q}(Vi-Si) = [Q}(H2-S2):a 
£. —  Seq_redex_l. 

T;Ahz[e](V1-S1) = [e](H2-S2):a 

Given a generic term U and substitution 0, an easy induction on the structure of U suffices to 
show that [Q]U - [&\U. Thus, £' is also a derivation of T; A hs [G](VX ■ Sx) = [e](H2-S2) : a. 
Therefore, by rule Seq_redexJ, there is a derivation £" of 

r;Ar-s [e]{V1-S1) = [&\{H2-S2):a. 

Let Z" =(T;A\- V1-Si = H2-S2: a). 

By the definition of -; from Section 3.1, we have that ((£',£"), ©, {£', £")) < (E, 0, £). There- 
fore, we can apply the induction hypothesis, obtaining that there are substitutions 0^ and 0' 
and a system of flex-flex equations Eff such that 

• 0 = Can(0j? o 0')| dom(e), 

• % :: [%]% and 

. X'::E',£"\Zff,&. 
Then, by applying rule pu_redex_l to X', we obtain the desired derivation X ofE\Eff,Q'. 

Redex-any: We proceed similarly to the previous case. 

Any-redex: The treatment of this case is again similar. 

Rigid-rigid: We proceed similarly to the cases of spine equations and term equations of composite 
type. 

Rigid-flex: By assumption, we have that   £ :: T; A hs  [@](h ■ Si) = [Q](F ■ S2) : a, where h is 
some rigid head. 
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Since, by Lemma 2.19, the equality judgment induces a congruence over terms, there is a 
derivation £' of T; A hB [0](F • S2) = [©P ■ Si) : a. Let f' = T; A h F • S2 = ft • Si : a. 

Now, by definition, ((=',£'), 6, {£',£')) -< (s>©>£)-   Therefore, we can apply the induction 
hypothesis and obtain substitutions 0' and Qg, and a flex-flex equation system Eg such that 

• 0 = Can(0# o 0')| dom(@), 

• % :: [%]s# and 

. X'::Z',?\Eff,&. 
where £' = (r; A h F ■ S2 = h ■ S\ : a). We obtain the desired derivation E' by applying rule 
pu_rf to X'. 

Flex-rigid: Then, { = (F;Ah F ■ S\ = ft ■ S2 ■ a), where F has type A' in the current variable 
pool $. From the existence of £, we infer that 0 = (Q*,U/F) for some canonical term U 
and substitution 0*. Moreover, since 0 is assumed to be well-typed, •; • hs,$ U : A' has a 
derivation U. 
We will distinguish cases on the value of Hs1{U), which exists since A' is the type of U and 
the source type of Si. 

HsiiU) = G, for some logical variable G. 
This case cannot arise since otherwise 0 would not be a solution of E. Indeed, by the 
relative heads lemma (Lemma 3.3), Can([0](F • Si)) = Can(f7 • [0]SX) = G ■ S[, for 
some canonical spine S[. On the other hand, Can([0](/i • S2)) = h ■ S'2, and ft 7^ G, by 
assumption. 

Hs1{U) = x, for some parameter x such that x: B appears in T or in A. In this situation, 
the resolution of £ (and S) proceeds by projection. 
We omit the easy proof by induction on £ that Si 4- A'. Moreover, by assumption, U is 
canonical, Hs^U) = x and U :: •; • l~s,$ U : A'. We are therefore in the conditions of 
applying the projection lemma (Lemma 3.11). We deduce then that there exist a canonical 
term V and a canonical substitution 0 such that 

• ■;• I- AY S^V, 
• •;• hL [e]V = U:A>, 

• lm(0) E U. 
By Assumption 3.6, we have that V and 0 mention logical variables that are distinct from 
any variable appearing in E or 0. In particular, (0 o ©*) = (0, 0*), and [0]0* = 0* and 
also [0*]V = V. From this fact, we can deduce the following sequence of equalities: 

e*,[e]v/F 
= [0]0*, [Q]V/F since [0]0* = 0*, 
= (0 o (0*, V/F))\F,dom(e') by definition of composition, 
= (0 o (0* o y/F))|dom(e) since [0*]V = V and dom(0) = (F,dom(e*)), 
= ((0 o 0*) o V/F)\ dom(©) by the associativity of substitution composition. 

By a simple induction, it is possible to ascertain that [0]S, i.e. [0*, U/F]E, has a derivation 
if and only if [0*, [&\V/F]E has one. Therefore, by the above equalities and the fact 
that S contains only variables that are in dom(0), we have that there is a derivation of 
[(0 o 0*) o V/F]E, i.e., by definition of substitution application, of 

[eoQ*]([V/F]E). 

Since lm(0) C U and (0o0*) = (0,0*), we have that Im(0o0*) = (Im(0),Im(0*)) C 
(U, lm(0*)) = lm(0*, U/F) = lm(0). Notice also that the substitution 0o0* is canonical 
since it corresponds to (0,0*) and both components are canonical. We can therefore apply 
the induction hypothesis obtaining that there exist substitutions 0" and 0^ and a flex-flex 
system S^ such that 

0o0*=Can(0J?o0")|dom(eoe.)> 
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• £ff "[%]3jff, and 

. X'::[V/F]E\Eff,Q". 

Since, by the soundness of staged equality (Theorem 2.17), U = Can([0]F), the sequence 
of equalities above entails also that © = Can((0 o 0*) o V/F)\ dom(e)- 
In order to conclude this subcase of the proof, we take 0' = 0" o V/F, while keeping ©^ 
and Eff unchanged. Then, 

• © 

=  Can((0 o 0*) o V/F)\ dom(e) by the above observation, 
= Can(Can(0J? o 0")| dom^QC@^ o V/F)\dom^    by induction hypothesis, 

=  Can(Can(0jff o 0") o V/F)\ dom(0) since dom(0 o 0*) C dom(0), 
=  Can((0Jgr o 0") o V/F)\ dom(©) because of the outer normalization, 
=  Can((0j o 0"), [Qff o Q"]V/F)\ dom(e) by definition of application, 

=  Can(0^, [0^]©", [0j9c]([0"]Vr/jF))|dom(0) by definition of composition, 
= Can(Qff, [Qff](©",[©"]V/F)\dom(e) by definition of application, 
= Can(0^f o (©" o V/F))\ dom(e) by definition of application, 

• Eg remains unchanged. 

• X :: E \ Eff, (©" o V/F)   by rule pu_fr_proj applied to X'. 

Hsx (U) = c, for some constant c of type B declared in E. The equation £ will be processed 
by imitation. 
We proceed similarly to the case we just analyzed, but rely on the imitation lemma 
(Lemma 3.13) rather than on the projection lemma. Moreover, we conclude the proof 
with an appeal to rule pujfrJmit. Bf 

3.5    Non-Determinism 

Huet's pre-unification algorithm for A~* is inherently non-deterministic since unification problems in this 
language usually do not admit most general unifiers. Indeed, when solving flex-rigid equations, we may 
have to choose between imitation and projection steps and, in the latter case, we might be able to project 
on different arguments. These are forms of "don't know" non-determinism. The presence of a linear 
context in 5-*--°&T and of constructs that operate on it gives rise to a number of new phenomena not 
present in A-* unification. 

First of all, the manner equations are rewritten in Figure 8 is constrained by the usual context 
management policy of linear logic. In particular, linear heads in rigid-rigid equations are removed from 
the context prior to unifying their spines (rule pu_rrJvar). Moreover, when simplifying equations among 
pairs, the linear context is copied to the two subproblems (pu_pair), and equations involving () can always 
be elided (pu_unit). Finally, when solving spine equations, the linear context must be distributed among 
the linear operands (puJapp) so that it is empty when the end of the spine is reached (pu_nil). As 
expected, equations among intuitionistic operands are created with an empty linear context (puJapp). 
Context splitting in rule puJapp represents a new form of "don't know" non-determinism not present 
in Huet's algorithm. Standard techniques of lazy context management [CHP96] can however be used in 
order to handle it efficiently and deterministically in an actual implementation. 

A new inherent form of non-determinism arises in the generation of the spine of substitution terms. 
Recall that such a term V is constructed in two phases: first, we build its constructor layer, recording 
local intuitionistic and linear parameters in two accumulators T' and A', respectively, as A-abstractions 
are introduced (first and third parts of Figure 9). Then, we construct a spine on the basis of the available 
type informations (second and fourth quarter of Figure 9), installing a fresh logical variable as the head 
of every operand. The contents of V and A' must then be distributed as if they were contexts. In 
particular, we must split A' among the linear operands (rules friJlam and frpJlam) so that, when the 
end of spine is generated, no linear parameter is left (rules fri_nil and frp_nil). Lazy strategies are not 
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A~* 
pre-unification [Hue75] 

patterns [MU91] 
pre-unification 

patterns [Dug93] 

T 

& 

no pre-unification 
A->-°& 

no pre-unification 

T 

A-° 
pre-unification? [Lev96] 

»&T 

pre-unification 
patterns [FL96] 

^-»■-o&T 

pre-unification 
(this paper) 

Figure 11: Sublanguages of A" ► -o&T 

viable in general this time because the heads of these operands are logical variables. Therefore, we must 
be prepared to non-deterministically consider all possible splits. 

This situation is illustrated by the equation 

x:a,y:a;■ h F~x~y = c'(G\ x y) ~(C?2 x y) : a. 

discussed in Section 3.2. An imitation step instantiates Ftoa term of the form Xx': A. \y' :B. c"M\ "M^ 
where each of the linear parameters x' and y' must appear either in M\ or in M2, but not in both. This 
produces the four solutions presented in Section 3.2. An actual implementation would avoid this addi- 
tional non-determinism by postponing the choices between the four imitations. A detailed treatment of 
the necessary constraints between variables occurrences is beyond the scope of this paper (see Section 4.2 
for further discussion; a similar technique is used in [HP97]). 

4    Discussion 

In this section, we consider various sublanguages of 5-*-°&T (0r equivalently A_>_0&T) obtained by eliding 
some of the type operators and the corresponding term constructors and destructors (Section 4.1). We also 
discuss problems and sketch solutions towards the efficient implementation of a unification procedure for 
^-►-O&T ^Section 4.2). Finally, we compare our work to related endeavors in the literature (Section 4.3). 

4.1     Sublanguages 

The omission of one or more of the type operators —>, —o, & and T and of the corresponding term 
constructs from /\

_^_0&T (or 5->-°&T) results in a number of A-calculi with different properties. 

First of all, the elision of -o, & and T reduces A">-0&T to A-*'. The few applicable rules in Figures 8- 
10 constitute then a new presentation of Huet's procedure [Hue75]. The combined use of inference rules 
and of a spine calculus results in an elegant formulation that can be translated almost immediately into 
an efficient implementation. 

Since linear objects in A"+-0&T are created and consumed by linear abstraction and application, 
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respectively, every sublanguage not containing —o is purely intuitionistic. In particular, A~y& coincides 
with the simply-typed A-calculus with pairs while A^&T corresponds to its extension with a unit type 
and unit element; the latter calculus is tightly related to the notion of Cartesian closed categories [AL91]. 
Unification in the restricted setting of higher-order patterns has been studied for these two languages in 
[Dug93] and [FL96], respectively. The appropriate restrictions of the rules in Figures 8-10 implement a 
general pre-unification procedure for these calculi. Differently from these proposals, our algorithm can 
solve any unification problem that admits a solution. However, we can guarantee neither termination in 
the general case, nor efficiency when dealing with higher-order patterns. 

The languages A~*'_0& and A-*'-0 are particularly interesting since the natural restriction of our pre- 
unification procedure is unsound for them in the following sense: We cannot apply our success criterion 
since not all flex-flex equations are solvable in this setting. Consider, for example, 

x:a,y:a; ■ h F'x — G~y : a. 

This equation has no solution since F must be instantiated with a term that, after /?-reduction, will 
explicitly use x, and G to a term that must mention y. Furthermore, whether a flex-flex equation has a 
solution in A-*'-0& or A-*"-0 is in general undecidable, since, for example, F"M\ — F"M2 is equivalent 
to the generic unification problem M\ = M%. The situation is clearly different in A~!"~0&T where () is 
always available as an information sink in order to eliminate unused linear parameters. However, the 
usual assumption that there exist closed terms of every type may not be reasonable in A_*'_0&T, and care 
must be taken in each application regarding the treatment of logical variables which may have no valid 
ground instances. In conclusion, pre-unification procedures in the sense of Huet are not achievable in the 
calculi with -o but without T. 

Finally, a restricted form of unification in the purely linear calculus A-0 has been studied in [Lev96]. 
The above counterexamples clearly apply also in this setting, but we have no result about the decidability 
of higher-order unification in this fragment. 

Figure 11 summarizes the taxonomy of sublanguages of A_>'_0&T we just discussed, their relationships 
and their properties as far as the existence of a pre-unification algorithm is concerned. We have also 
inserted references to works on the notion pattern for those languages for which this issue has been the 
object of research. Patterns in linear language have not been investigated yet. Some considerations can 
be found in the next section. 

4.2    Towards a Practical Implementation 

Huet's algorithm for pre-unification in A~* has been implemented in general proof search engines such 
as Isabelle [NP92] and logic programming languages such as XProlog [NM88] and shown itself to be 
reasonably efficient in practice. However, the non-determinism it introduces remains a problem, especially 
in logic programming. This issue is exacerbated in /\

_+_0&T due to its additional resource non-determinism 
during imitation and projections. 

For A-*, this problem has been addressed by Miller's language of higher-order patterns L\ [Mil91], 
which allows occurrences of logical variables to be applied to distinct parameters only. This syntactic 
restriction guarantees decidability and the existence of most general unifiers. An algorithm that solves 
equations in the pattern fragment but postpones as constraints any non L\ equation has been successfully 
implemented in the higher-order logic programming language Elf [Pfe91a]. Unfortunately, an analogous 
restriction for /\^

_0&T which would cover the situations arising in practice does not admit most general 
unifiers. A simple example illustrating this is 

x:a;- h F'x = c'(Fi "x)'(F2~x) : a. 

which has the two most general solutions 

F <- -AaJ
,:a.c*(FiV)*(G2*0). F2^ -\x":a.G2'() 

F<- -Az'ra.c^GrOHiVO, Fi<- -Aar":a.GrO 

neither of which is an instance of the other. This situation is common and occurs in several of our case 
studies. For certain flex-flex pattern equations, the set of most general unifiers cannot even be described 
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finitely in the language of patterns under any reasonable definition of this notion. This is illustrated by 

x:a,y:a;- h Fi"{x,y) = F2"x"y : a. 

for which the generic solution 

Fi <— Aw:a&a.G^Gr(FSTw)Ä(),G2
Ä(sND w)~Q) 

F2 i— Xu:a.\v:a.G',(Gi~u~Q,G2"v'()) 

(which is not a pattern), can be instantiated to infinitely many pattern substitutions by properly choosing 
a term for the new logical variable G. 

Despite these difficulties, the natural generalization of the notion of higher-order pattern introduced 
by [Dug93] and [FL96] for products to the linear case leads to a decidable unification problem for A_y_0&T. 
On this fragment (whose description is beyond the scope of the present paper), termination of the pre- 
unification algorithm in Section 3 is assured if we also incorporate an appropriate occurs-check as in the 
simply-typed case. Branching can furthermore be avoided by maintaining linear flex-flex equations as 
constraints and by using additional constraints between occurrences of parameters. In the first example 
above, the solution would be 

F <— Xx'-.a.c'iF^x'YiF^'x1) 

with the additional constraint that if a;' occurs in -F\ "x' then it must be absorbed (by ()) in F^x' and vice 
versa [HP97]. The second equation above would simply be postponed as a solvable equational constraint. 
Based on our experience with constraint simplification in Elf [Pfe91a] and preliminary experiments, we 
believe that this will be a practical solution. In particular, the use of explicit substitutions, investigated 
in [DHKP96] relatively to Elf, seems to provide a hook for the required linearity constraints. 

4.3    Related Work 

So far, only a very limited amount of research has been dedicated to unification algorithms for linear 
languages. To our knowledge, the only strictly related work, besides the extensive treatment in this 
paper, is due to Levy. In [Lev96], he studies a generalization of the contextual unification problem 
that corresponds to second-order unification in a formalism akin to the purely linear language A~°. He 
provides a sound and complete unification algorithm (flex-flex equations are indeed simplified) and proves 
its termination for three specific classes of equations. However, he does not discuss the decidability of 
the general instance of the problem, which, to our knowledge, is still open. In the context of A-0, our 
work is more general since the appropriate rules in Figures 8-10 apply to equations of arbitrary order. 
However, we achieve only pre-unifiers since we keep flex-flex equations as constraints. Instead, when 
Levy's procedure terminates, it always produces a fully worked-out solution. 

Most research on higher-order unification has focused on the simply typed A-calculus A-*. The most 
influential work is still the seminal paper [Hue75] by Huet. The individuation of the pattern fragment 
by Miller [Mil91] and of a terminating and unitary algorithm for it had extensive applications and will 
influence the direction of our future work. These ideas have been extended in [Pfe91b] to more general 
languages such as the calculus of constructions [CH88], which includes dependent types, polymorphism 
and type constructors definition. 

Of some relevance in our context is Prehofer's thesis [Pre95] where he considers the specific case of 
unification in A-* where the occurrences of logical variables are subject to linear restrictions. 

Duggan in [Dug93] extends Miller's work to a calculus akin to A_>& that includes product types and 
impredicative polymorphism [Pfe91b]. These two additions are orthogonal. The basic intuition behind 
Duggan's treatment of the pairing constructs is that distinct projection sequences applied to a given 
parameter can be viewed as distinct parameters as far as Miller's definition of patterns is concerned. He 
implicitly formalizes this idea by giving an alternative formulation of this calculus that emphasizes the 
role of projections. 

Fettig and Löchner push this idea further in [FL96] by defining a calculus that replaces the need 
for projections with the possibility of abstracting over pairs and more generally tuples. Therefore, they 
admit terms of the form \{x\,.. .xn). M. In this setting, their notion of pattern resembles Miller's original 
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proposal. They present a pattern unification procedure for A_f& and prove its soundness, completeness 
and termination. They extend these results to A_>&T. 

5    Conclusion and Future Work 

In this technical report, we have studied the problem of higher-order unification in the context of the linear 
simply typed A-calculus A~*'_0&T. A pre-unification algorithm in the style of Huet has been presented for 
the equivalent spine calculus g-»—°&T and new sources of inherent non-determinism due to linearity were 
pointed out. Moreover, sublanguages of ^->~<>&T were analyzed and it was shown that pre-unification 
procedures are not achievable for some of them. 

We are currently investigating the computational properties of the natural adaptation of Miller's 
higher-order patterns to A_>-0&T. Preliminary examples show that many common unifiable equations 
do not have most general unifiers due to non-trivial interferences among —o, & and T. However, we 
believe that these problems can be solved through constraint simplification and propagation techniques 
in a calculus of explicit substitutions. 
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Notation 

£ Equation 

T Intuitionistic context 

A Linear context 

0 Substitution 

S Equation system 

Eff Flex-flex equation system 

£ Signature 

$ Pool 

A,    B Type 

F,    G Logical variable 

H Head 
M,    N Term (\->~aScT) 

S Spine 

S Partial spine 

U,    V Term (S^&T) 
a Base type 

c Constant 

h Rigid head 

x,    y,    z,    /,    u,    v,    w Variables (parameters) 

£ Equality derivation 
£ Multiset equality derivation 

Ti ^-expansion derivation 

11 Variable raising derivation 
S Spine typing derivation 

S Partial spine typing derivation 

U Term typing derivation (5_f_0&T) 
W Reduction derivation 

X Unification derivation 

c:A Constant declaration 

x : A Variable (parameter) declaration 

F: A Logical variable typing 

T Unit type 
A &; B Additive product 

A—oB Linear arrow 

A —>• B Intuitionistic arrow 

() Unit element 

(M, N) Addivite pairing (A^-<I&T) 

\x:A.M Linear A-abstraction (A_f_0&T) 

\x:A.M Intuitionistic A-abstraction (A~*'_0&T) 

FSTM First projection (A
_>
-

<>&T
) 

SND M Second projection (A-*-^1") 
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M'N 

M N 

[M/x]N 

Can(M) 

H-S 

(U,V) 
Xx:A.U 

Xx:A.U 

NIL 

7Ti S 

u-s 
U;S 

[V/x]U 

[v/x]S 
Can(C/) 

HNF(tf), 

Linear application (A""*~"°&T) 
Intuitionistic application (A"^'_0&T) 

Meta-level substitution (A^-°&T) 

Canonical form (A-*-°&T) 

► -o&T 

U 

Root 

Addivite pairing (S~ 

Linear A-abstraction (S~*~°^T) 

Intuitionistic A-abstraction (5_>_0&T) 

End of spine 

First projection (5^-°&T) 
Second projection (5_*'_0&T) 

Linear application (5,_>_0&T) 

Intuitionistic application (5_>'_0&T) 

Meta-level substitution in terms (5->-0&T) 

Meta-level substitution in spines (5"*'_<>&T) 

Canonical form (5^-0&T) 

(Weak) head-normal form 
Variable ^-expansion 

H-S 
S@S' 

U/F 

F <^U 

dom(G) 
lm(0) 

rg(0) 

eFs 

[ep 
[0]S 
[6]0' 

[©]£ 
[6]S 
0o6' 

Can(O) 

T;A h U=V:A 

T, A h 5i = S2 : A > a 

T;A\- F1-S1=F2-S2 

J ::J 
T;A hs M :A 

T;Ahs U :A 

T;A\-S S :A>a 

Partial root 
Partial spine concatenation 

Substitution item 
Displayed substitution item 

Substitution domain 
Substitution image 
Substitution range 

Substitution restriction 
Substitution application (term) 
Substitution application (spine) 

Substitution application (substitution) 

Substitution application (equation) 

Substitution application (equation system) 

Substitution composition 
Canonical form (substitution) 

Term equation 
Spine equation 

Flex-flex equation 

Judgment derivability 
Typing (A^^&T) 

Term typing (S"^-°&T) 

Spine typing 
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u —> v Reduction (terms) 

5i —► 52 Reduction (spines) 

[/ —4* 1/ Iterated reduction (terms) 

Si —>* 52 Iterated reduction (spines) 

[/ ^> V Head-reduction 

J7 JJI»* y Iterated head-reduction 

[/ ^ V Weak-head reduction 

u ^*v Iterated weak-head reduction 

r;A hs U = V :A Staged equality (terms) 

T; A hE Si = S2 : A > a Staged equality (spines) 

r;A hs H-S~A Partial root typing 

r;A hE STB>,4 Partial spine typing 

#1;5i -^ H2-S2 Head-reduction for partial roots 

Hi-Si ^* H2-S2 Iterated head-reduction for partial roots 

iAs> c/ ^-expansion 

H\%,e Unification problem 

r;A h c-S' /At s^ V Imitation (terms) 

T; A h B iL S ^ 5 Imitation (spines) 

r; A h ^ fr71" 5 M' 1/ Projection (terms) 

r;Ahif«H5 Projection (spines) 

T; A h A M- V Variable raising (terms) 

T; A h a4S,yl Variable raising (spines) 

5 -7- A Approximate spine typing 

Si ~ S2 Approximate spine equality 
Hs{U) Relative head 
U =raise V Instantiating-term ordering (abstraction raising) 
Us QV Instantiating-term ordering (multiset-term) 

Us C. S Instantiating-term ordering (multiset-spine) 

Us C V Strict instantiating-term ordering (multiset-term) 

Us C Vs Strict instantiating-term ordering (multiset-multiset) 

(Ei, 0i, £1) -< (H2, 02, £2) Multiset equality derivation ordering 
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